04 Hadron Accelerators
A07 Electrostatic Accelerators
Paper Title Page
WEPC065 Design of a Low Energy Ion Beam Facility* 2169
 
  • M.R.F. Siggel-King, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O. Karamyshev
    JINR/DLNP, Dubna, Moscow region, Russia
  • G.A. Karamysheva
    MPI-K, Heidelberg, Germany
  • A.I. Papash
    JINR, Dubna, Moscow Region, Russia
  • M.R.F. Siggel-King
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Work supported by STFC, the EU under GA-PITN-215080, the Helmholtz Association and GSI under VH-NG-328.
A small electrostatic ring, and associated electrostatic injection beamlines, are being designed and developed. The ring will make possible a variety of experiments using a choice of many types of recirculating ions (e.g., from protons, H-, and antiprotons up to and including large charged biomolecules). A reaction microscope will be incorporated into the ring to enable differential ionization experiments between the recirculating ion beam and gas jet targets. Two injection sections have been designed to cover a variety of ion sources. The facility will be portable to enable it to be moved between facilities and beamlines and it will be unique due to its combination of design elements, flexible beam properties, energy (ca 3-30 keV) and type of circulating particles. In this paper, we give an update on this project.
 
 
WEPS030 Ion Optics Alignment in the Electrostatic Double Storage Ring DESIREE 2547
 
  • P. Löfgren, M. Blom, F. Hellberg, L. Liljeby, A. Simonsson
    MSL, Stockholm, Sweden
  • P. Reinhed
    Stockholm University, Stockholm, Sweden
 
  DESIREE is a cryogenic electrostatic double storage ring under construction at Stockholm University. The two rings have similar circumference, 8.8 m and a common straight section for merged beam experiments. In each ring the ions are guided by two 160° cylindrical deflectors and four 10° deflectors and focused by four quadrupole doublets. In terms of ion optics alignment the quadrupoles are the most important factor for the ion beam acceptance and the goal is to align all quadrupoles with precision of 0.1 mm. DESIREE is constructed as a double walled cryostat with an inner and an outer vacuum chamber. All optical elements are mounted directly on the bottom of the inner chamber. For positioning of the ion optics, the bottom plate is prepared with a number of footprints where each footprint consists of four small machined surfaces that define the height and two alignment holes that define the lateral position. The optical elements were aligned on the bottom plate using a portable measuring device in combination with a level instrument. In this work we describe the alignment procedure in detail and report on the overall precision obtained and the consequence for the ion beam.