Author: Zimmermann, R.
Paper Title Page
MOPC077 Commissioning of Multibunch Feedback Systems at the Fast Ramping Stretcher Ring ELSA 250
 
  • A. Roth, F. Frommberger, N. Heurich, W. Hillert, M. Schedler, R. Zimmermann
    ELSA, Bonn, Germany
 
  Funding: Supported by German Research Foundation through SFB/TR 16 and by Helmholtz Alliance through HA-101.
At the Electron Stretcher Facility ELSA of Bonn University, an external beam of either unpolarized or polarized electrons is supplied to hadron physics experiments. The ELSA stretcherring operates in the energy range of 1.2 to 3.5 GeV and achieves a duty cycle of up to 80% using a fast energy ramp of 4 GeV/s. Under these conditions, an increase of the internal beam current from an actual value of 20 mA up to 200 mA is planned. Such an upgrade is mainly limited by the excitation of multibunch instabilities. As one active counteraction, we have installed state-of-the-art bunch-by-bunch feedback systems for the longitudinal, as well as for both transverse planes. The detailed setup with all main components and first results of the commissioning of the systems will be presented. In particular, the performance of the longitudinal feedback with a stabilized synchrotron frequency during the fast energy ramp will be discussed.
 
 
MOPO004 A Longitudinal Kicker Cavity for a Bunch-by-bunch Feedback System at ELSA 484
 
  • N. Heurich, W. Hillert, A. Roth, R. Zimmermann
    ELSA, Bonn, Germany
 
  At the Electron Stretcher Facility ELSA of Bonn University, a longitudinal bunch-by-bunch feedback system is currently being installed in order to damp multibunch instabilities and to enable a future intensity upgrade of up to 200 mA. As a main component, a longitudinal kicker cavity was developed and manufactured. The kicker requires a bandwidth of 250~MHz taking into account the bunch spacing of 2 ns at ELSA. Existing designs used at other facilities were optimized in view of the considerably larger bunch lenght at ELSA. The choice of 1.125 GHz as a center frequency is a result of these considerations. With the resulting low quality factor, the design had to be optimized in order to maximize the shunt impedance. The longitudinal feedback is succesfully working with the prototype installed in the stretcher ring. The design and detailed simulations of the geometry are discussed and laboratory measurements are presented.  
 
TUPC074 A New Counting Silicon Strip Detector System for Precise Compton Polarimetry 1171
 
  • R. Zimmermann, W. Hillert, J.C. Wittschen
    ELSA, Bonn, Germany
 
  Funding: Supported by the German Research Foundation within the SFB/TR16
A Compton polarimeter is currently being installed at the Electron Stretcher Facility ELSA to monitor the degree of polarization of the stored electron beam. For this purpose, circularly polarized light that is emitted by a laser and backscattered off the beam has to be detected. Above all, as a result of ELSA's beam energies, it is necessary to measure the shift of the center of the photon spatial distribution which is obtained when the polarization of the laser is switched from left-hand to right-hand circular polarization with an accuracy of a few microns. In order to meet the required specifications, a new counting silicon strip detector system has been developed in cooperation with the SiLab/ATLAS group of the Physics Institute of the University of Bonn. In this contribution, the design of the system will be presented and first results will be shown.