Author: Zhang, W.
Paper Title Page
WEPS028 Lattice Design of a Rapid Cycling Medical Synchrotron for Carbon/Proton Therapy 2541
 
  • D. Trbojevic, J.G. Alessi, M. Blaskiewicz, C. Cullen, H. Hahn, D.I. Lowenstein, I. Marneris, W. Meng, J.-L. Mi, C. Pai, D. Raparia, A. Rusek, J. Sandberg, N. Tsoupas, J.E. Tuozzolo, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • N.M. Cook
    Stony Brook University, Stony Brook, USA
  • J.P. Lidestri
    HHMI, New York, USA
  • M. Okamura
    RBRC, Upton, Long Island, New York, USA
  • S. Peggs
    ESS, Lund, Sweden
 
  Funding: Work supported by Cooperative Research and Development Agreement (CRADA), No. BNL-C-10-03 between the Brookhaven National Laboratory and Best Medical International, Inc.
We present a design of the ion Rapid Cycling Medical Synchrotron (iRCMS) for carbon/proton cancer therapy facility. The facility design, produced at Brookhaven National Accelerator (BNL) at the Collider Accelerator Division (CAD) for the BEST Medical International, Inc., will be able to treat the cancer patients with carbon, lighter ions and protons. The low energy part accelerates ions and protons to the kinetic energy of 8 MeV. It consists of two ion sources (one of fully stripped carbon ions and one for protons), a Radio-Frequency Quadrupole (RFQ) and linac. The 8 GeV beam is injected into a fast cycling synchrotron (iRCMS). The lattice design is a racetrack, with zero dispersion two parallel straight sections. There are 24 combined function magnets in the two arcs with a radius of ~5.6 meters with maximum magnetic field of less than 1.3 T. The acceleration is performed in 30 Hz up to the required energy for the cancer tumor treatment assuming the spot scanning technique. The maximum energy for carbon ions is 400 MeV. Ions are extracted in a single turn and fed to different beam lines for patient treatment.