Author: Yuan, Y.J.
Paper Title Page
MOPC026 MA Cavity for HIRFL-CSR 125
 
  • L.R. Mei, Z. Xu, Y.J. Yuan, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
 
  To meet the requirements of conducting high energy density physics and plasma physics research at HIRFL-CSR. The higher accelerating gap voltage was required. A magnetic alloy (MA)-core loaded radio frequency (RF) cavity which can provide higher accelerating gap voltage has been studied in Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS), Lanzhou. To select proper MA material to load the RF cavity, measurement for MA cores has been conducted. The MA core with higher shunt impedance and lower than 1 quality factor (Q value) should be selected. The theoretical calculation and simulation for the MA-core loaded RF cavity can be consistent with each other well. Finally 1000kW power was needed to meet 50-kV accelerating gap voltage by calculation.  
 
WEPS052 Progress of Linear Injector for SSC at HIRFL 2610
 
  • Y. He, X. Du, L.P. Sun, Z.J. Wang, C. Xiao, Y.Q. Yang, Y.J. Yuan, X.H. Zhang, Z.L. Zhang
    IMP, Lanzhou, People's Republic of China
  • J.E. Chen, S.L. Gao, G. Liu, Y.R. Lu, K. Zhu
    PKU/IHIP, Beijing, People's Republic of China
  • J. Wang
    Lanzhou University of Technology, People's Republic of China
 
  A heavy ion linear accelerator for Separate Sector Cyclotron (SSC) is constructing at Heavy Ion Research Facility at Lanzhou (HIRFL). It is a new injector for SSC to improve its output beam intensity of 2 times for Super Heavy Experiment (SHE) and 10 times for injection of Cooling Storage Ring (CSR) than old Cyclotron. It has a normal conducting linac at upstream of SSC and one superconducting cryomodule at downstream of SSC to shift beam energy. The designed current of the linac is 0.5 mA and output energy is 0.57 MeV/u and 1.02 MeV/u. Beam dynamic study and prototype fabrication are introduced in the paper.