Author: Xing, Q.Z.
Paper Title Page
MOPC023 Design of a C-band 6 MeV Standing-wave Linear Accelerating Structure 119
 
  • J.H. Shao, H. Chen, Q.Z. Xing
    TUB, Beijing, People's Republic of China
 
  We design a C-band standing-wave biperiodic on-axis coupled linear accelerating structure for industrial and medical applications. It’s less than 300mm long; consists of 3 bunching cells and 9 normal cells. It can accelerate electrons to 6MeV and the pulsed beam current is 100mA. The RF power source is a 2.5MW magnetron. We implement 2D cells geometry optimization by SUPERFISH, beam dynamics study by PARMELA and full scale 3D calculations by MAFIA codes.  
 
MOPC024 Construction Status of the CPHS RFQ at Tsinghua University 122
 
  • Q.Z. Xing, Y.J. Bai, J.C. Cai, C. Cheng, L. Du, T. Du, X. Guan, Q. Qiang, X.W. Wang, Z.F. Xiong, S.Y. Yang, H.Y. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • J.H. Billen
    TechSource, Santa Fe, New Mexico, USA
  • W.Q. Guan, Y. He, J. Li
    NUCTECH, Beijing, People's Republic of China
  • J. Stovall
    CERN, Geneva, Switzerland
  • L.M. Young
    AES, Medford, NY, USA
 
  Funding: Work supported by the “985 Project” of the Ministry of Education of China.
We present, in this paper, the construction status of a Radio Frequency Quadrupole (RFQ) accelerator for the Compact Pulsed Hadron Source (CPHS) at Tsinghua University. The 3-meter-long RFQ will deliver 3 MeV protons to the downstream Drift Tube Linac (DTL) with the peak current of 50 mA, pulse length of 0.5 ms and beam duty factor of 2.5%. The RFQ has been mechanically separated into three sections. A ball-end mill, instead of a forming cutter, is adopted to machine the vane tip due to its varying radius of curvature. The precision of the numerically controlled milling machine has been verified by machining test pieces of aluminum and copper. Fine machining of the vanes was completed in July, 2011. The pre-braze tuning was completed at the beginning of this August.