Author: Wang, B.S.
Paper Title Page
THPO013 Development of a DSP-based Digital Control Three Phase Shunt Active Power Filter for Magnet Power Supply System 3361
 
  • B.S. Wang, K.-B. Liu, Y.S. Wong
    NSRRC, Hsinchu, Taiwan
 
  There will be 240 quadruple and 168 sextuple magnet power supplies installed in TPS storage ring, power factor of these power supplies is an important issue to be concerned. A digital control three-phase shunt active power filter (APF) for quadruple and sextuple magnet power supplies is implemented and the power factor is better than 0.98. The APF power stage employs a three-phase switch-mode rectifier (SMR) to reduce the input current harmonics distortion and correct the power factor. The digital control circuit of the three-phase shunt active power filter is implemented by using a multi-channel 12 bits analog-to-digital converter、high resolution Pulse Width Modulated (PWM) and a TMS320F28335 digital signal processor (DSP). The system configuration is described in three function blocks include principle of compensation、design of the snubber protective circuit and control strategies. Finally, the feasibility and validity of proposed scheme is simulated with Matlab simulink and verified by the homemade digital control three-phase shunt active power filter.  
 
THPO018 N+1 Redundancy Power Supply System by Paralleling Current Converter Modules with Digital Regulation Control 3376
 
  • B.S. Wang, K.-B. Liu, Y.S. Wong
    NSRRC, Hsinchu, Taiwan
 
  The N+1 redundancy power supply system is fulfilled with adopting the Bira System MCOR30s as a platform, eight pieces of Bira MCOR 30 power converter boards are installed at crate 2512 and outputs are connected together, the output current of these paralleled eight Bira MCOR 30 power converters are regulated by an external homemade digital control circuit. With homemade digital control circuit, these paralleled eight Bira MCOR 30 power converter modules could deliver up to 240A/30V with ±20ppm precision and stability. The digital regulation control circuit of the N+1 redundancy power supply system is implemented by using a multi-channel DAC5868 16-bits digital-to-analog converter (DAC)、a high speed AD8382 18-bits analog-to-digital converter and a TMS320F28335 digital signal processor (DSP). The update reference voltage frequency of DAC is 83.3 kHz. A DCCT is used as the current feedback component and the output current ripple of the N+1 redundancy power supply system is lower than 20ppm which is beyond the requirement of current TLS quadruple and sextuple power supplies and qualified to be used in the future TPS facility.