Author: Wallén, E.J.
Paper Title Page
TUPC132 Imaging of the MAX III Electron Beam Profile Using Visible Synchrotron Radiation 1332
  • A. Hansson, Å. Andersson, E.J. Wallén
    MAX-lab, Lund, Sweden
  The recently assembled MAX III diagnostic beam line utilizes the bending magnet synchrotron radiation (SR) in the visible to ultraviolet range to form images of the transverse electron beam profile. Computer simulations model the generation and propagation of the SR through the beam line, taking into account effects such as diffraction, the longitudinally distributed source point and the curvature of the electron orbit. Using the diagnostic beam line, the electron beam size and the emittance in the MAX III synchrotron light source has been determined.  
THPC058 The MAX IV Synchrotron Light Source 3026
  • M. Eriksson, J. Ahlbäck, Å. Andersson, M.A.G. Johansson, D. Kumbaro, S.C. Leemann, F. Lindau, L.-J. Lindgren, L. Malmgren, J.H. Modéer, R. Nilsson, M. Sjöström, J. Tagger, P.F. Tavares, S. Thorin, E.J. Wallén, S. Werin
    MAX-lab, Lund, Sweden
  • B. Anderberg
    AMACC, Uppsala, Sweden
  • L.O. Dallin
    CLS, Saskatoon, Saskatchewan, Canada
  The MAX IV synchrotron radiation facility is currently being constructed in Lund, Sweden. It consists of a 3 GeV linac injector and 2 storage rings operated at 1.5 and 3 GeV respectively. The linac injector will also be used for the generation of short X-ray pulses. The three machines mentioned above will be descibed with some emphasis on the effort to create a very small emittance in the 3 GeV ring. Some unconventional technical solutions will also be presented.  
THPC159 Factory Acceptance Test of COLDDIAG: A Cold Vacuum Chamber for Diagnostics 3263
  • S. Gerstl, T. Baumbach, S. Casalbuoni, A.W. Grau, M. Hagelstein, T. Holubek, D. Saez de Jauregui
    Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • V. Baglin
    CERN, Geneva, Switzerland
  • C. Boffo, G. Sikler
    BNG, Würzburg, Germany
  • T.W. Bradshaw
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • R. Cimino, M. Commisso, A. Mostacci, B. Spataro
    INFN/LNF, Frascati (Roma), Italy
  • J.A. Clarke, R.M. Jones, D.J. Scott
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.P. Cox, J.C. Schouten
    Diamond, Oxfordshire, United Kingdom
  • I.R.R. Shinton
    UMAN, Manchester, United Kingdom
  • E.J. Wallén
    MAX-lab, Lund, Sweden
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart, Germany
  Superconductive insertion devices (IDs) have higher fields for a given gap and period length compared with the state-of-the-art technology of permanent magnet IDs. One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. The installation in the storage ring of the Diamond Light Source is foreseen in November 2011. Here we report about the technical design of this device, the factory acceptance test and the planned measurements with electron beam.