Author: van der Geer, S.B.
Paper Title Page
WEPC085 Multipole Fringe Fields 2211
 
  • B.D. Muratori, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.J. de Loos, S.B. van der Geer
    Pulsar Physics, Eindhoven, The Netherlands
 
  When creating an initial model of an accelerator, one usually has to resort to a hard edge model for the quadrupoles and higher order multipoles at the start of the project. Ordinarily, it is not until much later on that one has a field map for the given multipoles. This can be rather inconvenient when one is dealing with particularly thin elements or elements which are rather close together in a beamline as the hard edge model may be inadequate for the level of precision desired. For example, in the EMMA project, the two types of quadrupoles used are so close together that they are usually described by a single field map or via hard edge models. The first method has the desired accuracy but was not available at the start of the project and the second is known to be a rough approximation. In this paper, an analytic expression is derived and presented for fringe fields for a multipole of any order with a view to applying it to cases like EMMA.  
 
WEPC102 Recent Developments for Efficient 3D Space Charge Computations Based on Adaptive Multigrid Discretizations 2253
 
  • G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • M.J. de Loos
    TUE, Eindhoven, The Netherlands
  • S.B. van der Geer
    Pulsar Physics, Eindhoven, The Netherlands
 
  Funding: Partly supported by BMBF under contract number 05K10HRC
Efficient and accurate space-charge computations are essential for the design of high-brightness charged particle sources. Recently a new adaptive meshing strategy based on multigrid was implemented in GPT and the capabilities were demonstrated. This new meshing scheme uses the solution of an intermediate step in the multigrid algorithm itself to define optimal mesh line positions. In this paper we discuss further developments of this adaptive meshing strategy. We compare the new algorithm with the current meshing scheme of GPT, where the mesh line positions are based upon the projected charge density.