Author: Valderanis, C.
Paper Title Page
THPS051 Development of Fragmented Low-Z Ion Beams for the NA61 Fixed-target Experiment at the CERN SPS 3541
 
  • I. Efthymiopoulos, O.E. Berrig, T. Bohl, H. Breuker, M. Calviani, S. Cettour-Cave, K. Cornelis, D. Manglunki, S. Mataguez, S. Maury, J. Spanggaard, C. Valderanis
    CERN, Geneva, Switzerland
  • Z. Fodor
    KFKI, Budapest, Hungary
  • M. Gazdzicki
    IKF, Frankfurt-am-Main, Germany
  • F. Gouber, A. Ivashkin
    RAS/INR, Moscow, Russia
  • P. Seyboth
    MPI-P, München, Germany
  • H. Stroebele
    IAP, Frankfurt am Main, Germany
 
  The NA61 experiment, aims to study the properties of the onset of deconfinement at low SPS energies and to find signatures of the critical point of strongly interacting matter. A broad range in T-μB phase diagram will be covered by performing an energy (13A-158A GeV/c) and system size (p+p, Be+Be, Ar+Ca, Xe+La) scan. In a first phase, fragmented ion beams of 7Be or 11C produced as secondaries with the same momentum per nucleon when the incident primary Pb-ion beam hits a thin Be target will be used. The H2 beam line that transports the beam to the experiment acts as a double spectrometer which combined with a new thin target (degrader) where fragments loose energy proportional to the square of their charge allows the separation of the wanted A/Z fragments. Thin scintillators and TOF measurement for the low energy points are used as particle identification devices. In this paper results from the first test of the fragmented ion beam done in 2010 will be presented showing that a pure Be beam can be obtained satisfying the needs of the experiment.