Author: Tochitsky, S.
Paper Title Page
WEPZ034 Double Resosnant Plasma Wakefields 2838
 
  • B.D. O'Shea, A. Fukasawa, B. Hidding, J.B. Rosenzweig, S. Tochitsky
    UCLA, Los Angeles, California, USA
  • D.L. Bruhwiler
    Tech-X, Boulder, Colorado, USA
 
  Present work in Laser Plasma Accelerators focuses on a single laser pulse driving a non-linear wake in a plasma. Such single pulse regimes require ever increasing laser power in order to excite ever increasing wake amplitudes. Such high intensity pulses can be limited by instabilities as well engineering restrictions and experimental constraints on optics. Alternatively we present a look at resonantly driving plasmas using a laser pulse train. In particular we compare analytic, numerical and VORPAL simulation results to characterize a proposed experiment to measure the wake resonantly driven by four Gaussian laser pulses. The current progress depicts the interaction of 4 CO2 laser pulses, λlaser = 10.6μm, of 3 ps full width at half max- imum (FWHM) length separated peak-to-peak by 18 ps, each of normalized vector potential a0 ≃ 0.7. Results con- firm previous discourse (*,**) and show, for a given laser pro- file, an accelerating field on the order of 900 MV/m, for a plasma satisfying the resonant condition, ωp=π/tfwhm.
* Umstadter, D., et al, Phys. Rev. Lett. 72, 1224
** Umstadter, D., et al, Phys. Rev. E 51, 3484
 
 
WEPZ023 Results from Plasma Wakefield Acceleration Experiments at FACET 2814
 
  • S.Z. Li, C.I. Clarke, R.J. England, J.T. Frederico, S.J. Gessner, M.J. Hogan, R.K. Jobe, M.D. Litos, D.R. Walz
    SLAC, Menlo Park, California, USA
  • E. Adli
    University of Oslo, Oslo, Norway
  • W. An, C.E. Clayton, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, S. Tochitsky
    UCLA, Los Angeles, California, USA
  • P. Muggli
    USC, Los Angeles, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE- AC02-76SF00515.
We report initial results of the Plasma Wakefield Acceleration (PWFA) Experiments performed at FACET - Facility for Advanced aCcelertor Experimental Tests at SLAC National Accelerator Laboratory. At FACET a 23 GeV electron beam with 1.8x1010 electrons is compressed to 20 microns longitudinally and focused down to 10 microns x 10 microns transverse spot size for user driven experiments. Construction of the FACET facility completed in May 2011 with a first run of user assisted commissioning throughout the summer. The first PWFA experiments will use single electron bunches combined with a high density lithium plasma to produce accelerating gradients >10GeV/m benchmarking the FACET beam and the newly installed experimental hardware. Future plans for further study of plasma wakefield acceleration will be reviewed.