Author: Taylor, G.
Paper Title Page
TUPC046 Alignment Tolerances for Vertical Emittance 1102
 
  • K.P. Wootton, R.P. Rassool, G. Taylor
    The University of Melbourne, Melbourne, Australia
  • M.J. Boland, R.T. Dowd, G. LeBlanc, Y.E. Tan
    ASCo, Clayton, Victoria, Australia
  • Y. Papaphilippou
    CERN, Geneva, Switzerland
 
  Alignment tolerances for the CLIC main damping ring magnetic lattice elements are presented. Tolerances are defined by the design equilibrium vertical emittance of 1 pm rad. The sensitivity of the uncorrected lattice to magnet misalignments is presented. Misalignments considered included quadrupole vertical offsets and rolls, sextupole vertical offsets, and main dipole rolls. Seeded simulations were conducted in MAD-X, and compared with expectation values calculated from theory. The lattice was found to be sensitive to betatron coupling as a result of sextupole vertical offsets in the arcs. Alignment tolerances, BPM and corrector requirements are presented also. For the same misalignment types, the equilibrium emittance of the corrected lattice is simulated. These are compared with expectation values calculated from theory. The vertical alignment tolerance of arc sextupoles is again demanding.