Author: Tavares, P.F.
Paper Title Page
MOPC051 The 100 MHz RF System for the MAX IV Storage Rings 193
 
  • Å. Andersson, E. Elafifi, M. Eriksson, D. Kumbaro, P. Lilja, L. Malmgren, R. Nilsson, H. Svensson, P.F. Tavares
    MAX-lab, Lund, Sweden
  • J.H. Hottenbacher
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
  • A. Milan
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • A. Salom
    ELETTRA, Basovizza, Italy
 
  The construction of the MAX IV facility has started and user operation is scheduled to commence 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, and a linac-based short pulse facility. In this paper the RF systems for the two storage rings are described. The RF systems will be based on either tetrode or solid state amplifiers working at 100 MHz. Circulators will be used to give isolation between cavity and power amplifier. The main cavities are of normal conducting, entire copper, capacity loaded type, where the present cavities at MAX-lab has served as prototypes. For the MAX IV ring operation it is essential to elongate bunches, in order to minimize the influence of intra beam scattering on beam transverse emittances. For this, 3rd harmonic passive (Landau-) cavities are employed. These are of similar type as the main cavities, mainly because the capacity loaded type has the advantage of pushing higher order modes to relatively high frequencies compared to pill-box cavities. Digital low level RF systems will be used, bearing in mind the possibility of post mortem analysis.  
 
MOPS066 Collective Effects in the MAX IV 3 GeV Ring 754
 
  • P.F. Tavares
    MAX-lab, Lund, Sweden
  • T.F. Günzel
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  We present calculations of collective instability effects in the 3 GeV electron storage ring of the MAX IV facility currently under construction in Lund, Sweden. The storage ring is designed to deliver ultra-low emittance down to 0.24 nm rad so as to provide high brightness synchrotron radiation from undulators. This is achieved in a comparatively small machine (528 m circumference) through the use of a multi-bend achromat lattice and a compact magnet design featuring multi-purpose narrow gap magnet blocks. This design features small dispersion leading to low momentum compaction, which, together with the small circular (11 mm radius) chambers, poses a challenge to reach the design current (500 mA in 176 bunches) without exciting instabilities and degrading beam parameters due to the interaction with the machine impedance. Particularly important are multi-bunch resistive wall effects in the NEG coated copper chamber as well single-bunch instabilities driven by the broad-band impedance. A low RF frequency (100 MHz) and harmonic cavities are foreseen to lengthen the bunches and increase instability thresholds.  
 
TUPS016 Vacuum System Design for the MAX IV 3 GeV Ring 1554
 
  • E. Al-dmour, D. Einfeld, J. Pasquaud, M. Quispe
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • J. Ahlbäck, M.J. Grabski, P.F. Tavares
    MAX-lab, Lund, Sweden
 
  We describe the conceptual design of the vacuum system of the 3 GeV electron storage ring in the MAX IV facility currently under construction in Lund, Sweden. The standard vacuum chambers are for the most part a cylindrical copper tube with 11 mm inner radius whereas stainless steel will be used at selected locations for beam position monitors, bellows and corrector vacuum chambers. In order to cope with the low vacuum conductance, distributed pumping will be provided through NEG coating of all chambers, including those in dipole magnets making MAX IV the first storage ring to be fully NEG coated. We present the mechanical and thermal design of these chambers and discuss the challenges involved in extracting insertion device radiation as well as coping with the heat load from both IDs and bending magnets in a machine with large bending radius, narrow chambers and tight mechanical tolerance requirements.  
 
THPC054 Project Status of the Polish Synchrotron Radiation Facility Solaris 3014
 
  • C.J. Bocchetta, P.P. Goryl, K. Królas, M. Mlynarczyk, M.J. Stankiewicz, P.S. Tracz, Ł. Walczak, A.I. Wawrzyniak
    Solaris, Krakow, Poland
  • J. Ahlbäck, Å. Andersson, M. Eriksson, M.A.G. Johansson, D. Kumbaro, S.C. Leemann, L. Malmgren, J.H. Modéer, P.F. Tavares, S. Thorin
    MAX-lab, Lund, Sweden
  • E. Al-dmour, D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  Funding: European Regional Development Fund within the frame of the Innovative Economy Operational Program: POIG.02.01.00-12-213/09
The Polish synchrotron radiation facility Solaris is being built at the Jagiellonian University in Krakow. The project is based on an identical copy of the 1.5 GeV storage ring being concurrently built for the MAX IV project in Lund, Sweden. A general description of the facility is given together with a status of activities. Unique features associated with Solaris are outlined, such as infra-structure, the injector and operational characteristics.
 
 
THPC058 The MAX IV Synchrotron Light Source 3026
 
  • M. Eriksson, J. Ahlbäck, Å. Andersson, M.A.G. Johansson, D. Kumbaro, S.C. Leemann, F. Lindau, L.-J. Lindgren, L. Malmgren, J.H. Modéer, R. Nilsson, M. Sjöström, J. Tagger, P.F. Tavares, S. Thorin, E.J. Wallén, S. Werin
    MAX-lab, Lund, Sweden
  • B. Anderberg
    AMACC, Uppsala, Sweden
  • L.O. Dallin
    CLS, Saskatoon, Saskatchewan, Canada
 
  The MAX IV synchrotron radiation facility is currently being constructed in Lund, Sweden. It consists of a 3 GeV linac injector and 2 storage rings operated at 1.5 and 3 GeV respectively. The linac injector will also be used for the generation of short X-ray pulses. The three machines mentioned above will be descibed with some emphasis on the effort to create a very small emittance in the 3 GeV ring. Some unconventional technical solutions will also be presented.