Author: Tauchi, T.
Paper Title Page
TUPC016 Status of the ATF2 Lattices 1027
 
  • E. Marin, R. Tomás
    CERN, Geneva, Switzerland
  • P. Bambade
    LAL, Orsay, France
  • T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • A. Seryi
    JAI, Oxford, United Kingdom
  • G.R. White, M. Woodley
    SLAC, Menlo Park, California, USA
 
  The latest status for the ATF2 Nominal and Ultra-low beta lattices designs obtained to minimize the detrimental effect of the measured multipoles are presented in this paper. A set of correction knobs for the most important aberrations at the IP have been obtained for both lattices in order to perform the tuning under realistic imperfections. Starting from the tuned ATF2 Nominal lattice a squeeze sequence reducing betay is performed to reach the ultra-low beta lattice. Tuning results are shown for both options.  
 
TUPC119 A Comprehensive Study of Nanometer Resolution of the IPBPM at ATF2* 1296
 
  • Y.I. Kim, H. Park
    Kyungpook National University, Daegu, Republic of Korea
  • S.T. Boogert
    Royal Holloway, University of London, Surrey, United Kingdom
  • J.C. Frisch, D.J. McCormick, J. Nelson, T.J. Smith, G.R. White, M. Woodley
    SLAC, Menlo Park, California, USA
  • Y. Honda, R. Sugahara, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: Work supported in part by Department of Energy Contract DE-AC02-76SF00515.
High-resolution beam position monitors (IPBPMs) have been developed in order to measure the electron beam position at the focus point of ATF2 to a few nanometers in the vertical plane. To date, the IPBPM system has operated in test mode with a highest demonstrated resolution of 8.7 nm in the ATF extraction line during 2008. After expected noise source calculations there still remains 7.9 nm of noise of unexplained origin. We summarize the experimental work on the IPBPM system since this measurement and outline the possible origins of these sources. We then present a study plan to be performed at the ATF2 facility designed to identify and to improve the resolution performance and comment on the expected ultimate resolution of this system.