Author: Tanaka, R.
Paper Title Page
WEPC143 First Operation of the SACLA Control System in SPring-8 2325
 
  • R. Tanaka, Y. Furukawa, T. Hirono, M. Ishii, M. Kago, A. Kiyomichi, T. Masuda, T. Matsumoto, T. Matsushita, T. Ohata, C. Saji, T. Sugimoto, M. Yamaga, A. Yamashita
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Fukui, T. Hatsui, N. Hosoda, T. Ohshima, T. Otake, Y. Otake, H. Takebe
    RIKEN/SPring-8, Hyogo, Japan
  • H. Maesaka
    RIKEN Spring-8 Harima, Hyogo, Japan
 
  The control system design of the X-ray free electron laser facility (SACLA) in SPring-8 has started in 2006. Now, the facility has completed to start beam commissioning in February 2011. The electron beams were successfully accelerated up to 8 GeV and the first SASE X-ray was observed. The control system adopts the 3-tier standard model by using MADOCA framework developed in SPring-8. The upper control layer consists of Linux PCs for operator consoles, Sybase RDBMS for data logging and FC-based NAS for NFS. The lower layer consists of VMEbus systems with off-the-shelf I/O boards and specially developed boards for RF waveform processing with high precision. Solaris OS is adopted to operate VMEbus CPU. The PLC is used for slow control and connected to the VME systems via FL-net. The Device-net is adopted for frontend device control to reduce the number of signal cables. Some of VMEbus systems have a beam-synchronized data-taking system to meet 60Hz electron beam operation for the beam tuning diagnostics. The accelerator control system has gateways not only to monitor device status but also control the tuning points of the facility utility system, especially cooling water.