Author: Tanaka, K.H.
Paper Title Page
TUPS034 Development and Construction of the Beam Dump for J-PARC Hadron Hall 1608
 
  • A. Agari, E. Hirose, M. Ieiri, Y. Katoh, M. Minakawa, R. Muto, M. Naruki, Y. Sato, S. Sawada, Y. Shirakabe, Y. Suzuki, H. Takahashi, M. Takasaki, K.H. Tanaka, A. Toyoda, H. Watanabe, Y. Yamanoi
    KEK, Tsukuba, Japan
  • H. Noumi
    RCNP, Osaka, Japan
 
  Funding: This work is supported by Grant-in-Aid (No.22740184) for Young Scientists (B) of the Japan Ministry of Education, Culture, Sports, Science and Technology [MEXT].
A facility of Hadron hall at Japan Proton Accelerator Research Complex (J-PARC) had been constructed in June 2007. Hadron hall is designed to handle intense slow-extraction proton beam from the main accelerator of J-PARC, i.e. 50-GeV-PS. The first transportation of the proton beam to the hall was successfully made in Jan. 2009. A beam dump constructed at the end of the primary proton beam line in Hadron hall is designed to safely absorb 15 μA (=750-kW) proton beam. Its central core of the dump is made of copper with water cooling and is surrounded by iron and concrete for radiation protection. We made thermal and mechanical FEM analysis for investigating heat generation and mechanical stress from energy deposition. We also made cooling experiments for measuring heat transfer coefficient of candidates for new cooling device. As a result, the adopted device has direct cooling paths which are prepared as long holes made by Gun Drill from the outer surface of the copper core. In addition, the beam dump is designed to safely move to 50-m downstream as one body for future expansion of Hadron hall. This paper reports development and construction of the beam dump in Hadron hall.
 
 
THOBB02 High Gradient Magnetic Alloy Cavities for J-PARC Upgrade 2885
 
  • C. Ohmori, O. Araoka, E. Ezura, K. Hara, K. Hasegawa, A. Koda, Y. Makida, Y. Miyake, R. Muto, K. Nishiyama, T. Ogitsu, H. Ohhata, K. Shimomura, A. Takagi, K. Takata, K.H. Tanaka, M. Toda, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
  • T. Minamikawa
    University of Fukui, Fukui, Japan
  • M. Nomura, A. Schnase, T. Shimada, F. Tamura, M. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  Magnetic alloy cavities are used for both MR and RCS synchrotrons. Both cavity systems operate successfully and they generate a higher voltage than could be achieved by an ordinary ferrite cavity system. For the future upgrade of J-PARC, a higher RF voltage is needed. A new RF cavity system using the material, FT3L, is designed to achieve this higher field gradient. A large production system using an old cyclotron magnet was constructed to anneal 85-cm size FT3L cores in the J-PARC Hadron Experiment Hall. The muSR (Muon Spin Rotation/Relaxation/Resonance) Experiments were also carried out to study the magnetic alloy. The status of development on the J-PARC site and a new RF system design will be reported.  
slides icon Slides THOBB02 [2.729 MB]