Author: Takahashi, H.
Paper Title Page
TUPS084 Development Status of PPS, MPS and TS for IFMIF/EVEDA Prototype Accelerator 1734
 
  • H. Takahashi, T. Kojima, T. Narita, K. Nishiyama, H. Sakaki, K. Tsutsumi
    JAEA, Aomori, Japan
 
  Control System for IFMIF/EVEDA* prototype accelerator consists of six subsystems; Central Control System (CCS), Local Area Network (LAN), Personnel Protection System (PPS), Machine Protection System (MPS), Timing System (TS) and Local Control System (LCS). The IFMIF/EVEDA prototype accelerator provides deuteron beam with the power more than 1 MW, which is as same as that in cases of J-PARC and SNS. Then, the PPS is required to protect technical and engineering staff against unnecessary exposure and the other danger phenomena. The MPS and the TS are strongly required a high performance and precision to avoid radio-activation of the accelerator components. To realize these requirements, the PPS designed that Programmable Logic Controllers (PLCs) are used mainly, and a sequence is programmed for entering and leaving of controlled area and etc. Hardware and logic sequences for the MPS are designed to realize the beam inhibition time within 30 micro-seconds. The TS prototype modules were designed and tested using 10 MHz master clock and 100 Hz reference trigger. This article presents the PPS, MPS and TS design in details.
* International Fusion Material Irradiation Facility / Engineering Validation and Engineering Design Activity
 
 
TUPS034 Development and Construction of the Beam Dump for J-PARC Hadron Hall 1608
 
  • A. Agari, E. Hirose, M. Ieiri, Y. Katoh, M. Minakawa, R. Muto, M. Naruki, Y. Sato, S. Sawada, Y. Shirakabe, Y. Suzuki, H. Takahashi, M. Takasaki, K.H. Tanaka, A. Toyoda, H. Watanabe, Y. Yamanoi
    KEK, Tsukuba, Japan
  • H. Noumi
    RCNP, Osaka, Japan
 
  Funding: This work is supported by Grant-in-Aid (No.22740184) for Young Scientists (B) of the Japan Ministry of Education, Culture, Sports, Science and Technology [MEXT].
A facility of Hadron hall at Japan Proton Accelerator Research Complex (J-PARC) had been constructed in June 2007. Hadron hall is designed to handle intense slow-extraction proton beam from the main accelerator of J-PARC, i.e. 50-GeV-PS. The first transportation of the proton beam to the hall was successfully made in Jan. 2009. A beam dump constructed at the end of the primary proton beam line in Hadron hall is designed to safely absorb 15 μA (=750-kW) proton beam. Its central core of the dump is made of copper with water cooling and is surrounded by iron and concrete for radiation protection. We made thermal and mechanical FEM analysis for investigating heat generation and mechanical stress from energy deposition. We also made cooling experiments for measuring heat transfer coefficient of candidates for new cooling device. As a result, the adopted device has direct cooling paths which are prepared as long holes made by Gun Drill from the outer surface of the copper core. In addition, the beam dump is designed to safely move to 50-m downstream as one body for future expansion of Hadron hall. This paper reports development and construction of the beam dump in Hadron hall.