Author: Strzelczyk, M.
Paper Title Page
TUPZ030 Simulation of Linear Beam Parameters to Minimize the Duration of the Squeeze at the LHC 1873
 
  • X. Buffat
    EPFL, Lausanne, Switzerland
  • G.J. Müller, S. Redaelli, M. Strzelczyk
    CERN, Geneva, Switzerland
 
  The betatron squeeze allows to increase the luminosity of a collider by reducing the β function at the interaction points. This operation has shown to be very critical in previous colliders. In this state of mind, the squeezing was performed extremely safely during the first year of operation of the Large Hadron Collider, at the expense of the duration of the process. As the turnaround time is a relevant parameter for the integrated luminosity, a squeeze of shorter duration is proposed for 2011 and further. MadX simulation of linear beam parameters based on settings extracted from the LHC control system are used to justify the proposal. Further optimization of the squeeze setting generation is also discussed.  
 
WEPO031 The Magnetic Model of the LHC during Commissioning to Higher Beam Intensities in 2010-2011 2466
 
  • L. Deniau, N. Aquilina, L. Fiscarelli, M. Giovannozzi, P. Hagen, M. Lamont, G. Montenero, R.J. Steinhagen, M. Strzelczyk, E. Todesco, R. Tomás, W. Venturini Delsolaro, J. Wenninger
    CERN, Geneva, Switzerland
 
  The Field Description of the Large Hadron Collider (FiDeL) model is a set of semi-empirical equations linking the magnets behaviours established from magnetic measurements to the magnetic properties of the machine observed through beam measurements. The FiDeL model includes the parameterization of static components such as magnets residual magnetization, persistent currents, hysteresis and saturation as well as the decay and snap-back dynamic components. In the present paper, we outline the relationship between the beam observables (orbit, tune, chromaticity) and the model components during the commissioning to higher beam intensities in 2010-2011, with an energy of 3.5 TeV per beam. The main relevant issues are (i) the operation at 2 A/s and 10 A/s ramp rate and their influence on chromatic correction, (ii) the beta beating and its relation to the knowledge of the resistive quadrupoles transfer functions and (iii) the observed tune decay at injection energy and its possibles origins.