Author: Sonnad, K.G.
Paper Title Page
MOPS088 Simulation of Electron Cloud Beam Dynamics for CesrTA 808
 
  • K.G. Sonnad, G. Dugan, M.A. Palmer, G. Ramirez, H.A. Williams
    CLASSE, Ithaca, New York, USA
  • K.R. Butler
    Cornell University, Ithaca, New York, USA
  • M.T.F. Pivi
    SLAC, Menlo Park, California, USA
 
  This presentation provides a comprehensive set of results obtained using the simulation program CMAD. CMAD is being used for studying electron cloud induced beam dynamics issues for CesrTA, which is a test facility for studying physics associated with electron and positron damping rings. In particular, we take a closer look at electron cloud induced effects on positron beams, including head-tail motion, emittance growth and incoherent tune shifts for parameters specific to ongoing experimental studies at CesrTA. The correspondence between simulation and experimental results will also be discussed.
Work supported by US Department of Energy grant number DE-FC02-08ER41538
and the National Science Foundation grant number PHY-0734867
 
 
TUPC170 Resonant TE Wave Measurements of Electron Cloud Densities at CesrTA 1434
 
  • J.P. Sikora, M.G. Billing, M.A. Palmer, K.G. Sonnad
    CLASSE, Ithaca, New York, USA
  • B.T. Carlson
    CMU, Pittsburgh, Pennsylvania, USA
  • S. De Santis
    LBNL, Berkeley, California, USA
  • K.C. Hammond
    Harvard University, Cambridge, Massachusetts, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, and the US Department of Energy DE-FC02-08ER41538.
The Cornell Electron Storage Ring has been reconfigured as a test accelerator (CesrTA). Measurements of electron cloud densities have been made at CesrTA using the TE Wave transmission technique. However, interpretation of the data based on single pass transmission is problematic because of the reflections and standing waves produced by discontinuities in the beam pipe - from pumps, bellows, etc. that are normally present in an accelerator vacuum chamber. An alternative model is that of a resonant cavity, formed by the beampipe and its discontinuities. The theory for the measurement of plasma densities in cavities is well established. This paper will apply this theory to electron cloud measurements, present some simplified measurements on waveguide, and apply this model to the interpretation of some of the data taken at CesrTA.
 
 
WEPC095 Simulations of the Microbunching Instability at ANKA using a Vlasov-Fokker-Planck Solver 2232
 
  • M. Klein, A.-S. Müller
    KIT, Karlsruhe, Germany
  • K.G. Sonnad
    CLASSE, Ithaca, New York, USA
 
  In order to produce coherent synchrotron radiation the ANKA light source is operated frequently in short bunch mode. It is known that during this procedure strong self fields caused by high electron densities can enforce initial density fluctuations and thus lead to microbunching. The build-up of those substructures is accompanied by bursting radiation which provides higher radiation power for the users. Damping and diffusion due to incoherent radiation smoothens the bunch shape again and hence lead to periodic or chaotic bursting cycles. The evolution of the electron bunch density under the influence of self fields can be described by the Vlasov-Fokker-Plank (VFP) equation. We present results from a numerical solution of the VFP-equation for parameters used in standard short bunch mode at ANKA.  
 
MOPS084 Status of Electron Cloud Dynamics Measurements at CESRTA* 799
 
  • M.G. Billing, G. Dugan, M.J. Forster, D.L. Kreinick, R.E. Meller, M.A. Palmer, G. Ramirez, M.C. Rendina, N.T. Rider, J.P. Sikora, K.G. Sonnad, H.A. Williams
    CLASSE, Ithaca, New York, USA
  • J.Y. Chu
    CMU, Pittsburgh, Pennsylvania, USA
  • J.W. Flanagan
    KEK, Ibaraki, Japan
  • R. Holtzapple, M. Randazzo
    CalPoly, San Luis Obispo, California, USA
 
  Funding: Supported by US National Science Foundation (PHY-0734867) & Dept. of Energy (DE-FC02-08ER41538)
The study of electron cloud-related instabilities for the CESR-TA project permits the observation of the interaction of the electron cloud with the stored beam under a variety of accelerator conditions. These measurements are undertaken utilizing automatic and semi-automatic techniques for three basic observations: the measurement of tune shifts of individual bunches along a train, the detection of the coherent self-excited spectrum for each bunch within a train and the pulsed excitation of either the betatron dipole or head-tail mode for each individual bunch within the train, followed by the observation of the damping of its coherent motion. These techniques are employed to study the electron cloud-related interactions in a number of conditions, such as trains of bunches with low emittance and spaced by as little as 4 nsec between bunches. We report on the most recent observations and results.