Author: Sandri, S.
Paper Title Page
THPS067 The TOP-IMPLART Project 3580
 
  • C. Ronsivalle, M.C. Carpanese, G. Messina, L. Picardi, S. Sandri
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • M. Benassi, L. Strigari
    IFO, Roma, Italy
  • E. Cisbani, S.F. Frullani, V. Macellari
    ISS, Rome, Italy
  • C. Marino
    ENEA Casaccia, Roma, Italy
 
  The TOP-IMPLART project, developed by ENEA, the Italian National Institute of Health (ISS) and Regina Elena National Cancer Institute-IFO-Rome is devoted to the realization of a proton therapy centre to be sited at IFO, based on a sequence of linear accelerators and designed with three treatment rooms: one with a 150 MeV beam for shallow tumors and two with a 230 MeV beam for deep tumors. The first part of the acronym remarks the heritage from the TOP Project developed in 1998-2005 by ISS and ENEA, whilst the second part (“Intensity Modulated Proton Linear Accelerator for RadioTherapy”) exploits the possibility to perform a highly conformational therapy based on spatial and intensity modulation of the beam. The segment up to 150 MeV, funded by the Italian “Regione Lazio” for 11M€ over four years, is under installation at ENEA-Frascati for its validation before the transfer to IFO. The low energy part is also used as a facility for radiobiology experiments in the framework of a satellite program foreseeing cells irradiation at 7 MeV with a vertical and horizontal beam and small animal irradiation with a 17.5 MeV horizontal beam. The status of the Project is presented.  
 
THPS068 A Proton Therapy Test Facility: The Radiation Protection Design 3583
 
  • S. Sandri, M.C. Carpanese, G. Ottaviano, L. Picardi, C. Poggi, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  A proton therapy test facility is planned to be sited in the Frascati ENEA Research Center, in Italy. A 30 m long, 3 m wide bunker has to be designed to host a proton linear accelerator with a low beam current, lower than 10 nA in average, and an energy up to 150 MeV. The accelerator will be part of the TOP-IMPLART project for deep tumors treatment. The design of the 150 MeV accelerator is under study and the radiation protection solutions are considered in this phase. The linear accelerator has some safety advantages if compared to cyclotrons and synchrotrons. It can be easily housed in the long, narrow tunnel. The main radiation losses during the acceleration process occur below 20 MeV, with a low neutron production. As a consequence the barriers needed should be substantially lighter than the one used for other types of machines. In the paper the simulation models and the calculation performed with Monte Carlo codes are described. The related results are presented together with those assessed by using published experimental data. Considerations about workers and population protection are issued in the conclusions.