Author: Salt, M.D.
Paper Title Page
TUPC028 Background and Energy Deposition Studies for the CLIC Post-Collision Line* 1060
 
  • R. Appleby, M.D. Salt
    UMAN, Manchester, United Kingdom
  • L.C. Deacon, E. Gschwendtner
    CERN, Geneva, Switzerland
 
  The CLIC post-collision line is designed to transport the spent-beam products of collision to their respective dumps, with minimal losses and thus minimal background contributions. With nanometre spot-sizes at TeV energies, large beam-beam effects induce divergence and dispersion of the outgoing beams, with a large production cross-section of Beamstrahlung photons and subsequently coherent pairs. The post-collision line should provide sufficient divergence of the beam to avoid damage to the vacuum exit and dump entrance windows. In this study, the beam losses are investigated, with the production of secondary particles from the interaction with matter simulated. The particle flux leakage from absorbers and dumps is modelled to determine the total energy deposited on magnets of the post-collision line. Finally, both electromagnetic and hadronic backgrounds at the CLIC experiment are considered.