Author: Reece, C.E.
Paper Title Page
MOOCA01 Production and Testing Experience with the SRF Cavities for the CEBAF 12 GeV Upgrade 26
 
  • A. Burrill, G.K. Davis, F. Marhauser, C.E. Reece, A.V. Reilly, M. Stirbet
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The CEBAF recirculating CW electron linear accelerator at Jefferson Lab is presently undergoing a major upgrade to 12 GeV. This project includes the fabrication, preparation, and testing of 80 new 7-cell SRF cavities, followed by their incorporation into ten new cryomodules for subsequent testing and installation. In order to maximize the cavity Q over the full operable dynamic range in CEBAF (as high as 25 MV/m), the decision was taken to apply a streamlined preparation process that includes a final light temperature-controlled electropolish of the rf surface over the vendor-provided bulk BCP etch. Cavity processing work began at JLab in September 2010 and will continue through December 2011. The excellent performance results are exceeding project requirements and indicate a fabrication and preparation process that is stable and well controlled. The cavity production and performance experience to date will be summarized and lessons learned reported to the community.
 
slides icon Slides MOOCA01 [4.376 MB]  
 
MOPC116 Development of Nb and Alternative Material Thin Films Tailored for SRF Applications 349
 
  • A-M. Valente-Feliciano, H.L. Phillips, C.E. Reece, J.K. Spradlin, B. Xiao, X. Zhao
    JLAB, Newport News, Virginia, USA
  • H. Baumgart, D. Gu
    ODU, Norfolk, Virginia, USA
  • D. Beringer, R.A. Lukaszew
    The College of William and Mary, Williamsburg, USA
  • K.I. Seo
    NSU, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S.DOE Contract No. DE-AC05-06OR23177.
Over the years, Nb/Cu technology, despite its shortcomings due to the commonly used magnetron sputtering, has positioned itself as an alternative route for the future of superconducting structures used in accelerators. Recently, significant progress has been made in the development of energetic vacuum deposition techniques, showing promise for the production of thin films tailored for SRF applications. JLab is pursuing energetic condensation deposition via techniques such as Electron Cyclotron Resonance and High Power Impulse Magnetron Sputtering. As part of this project, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated with the characterization of their surface, structure, superconducting properties and RF response. It has been shown that the film RRR can be tuned from single digits to values greater than 400. This paper presents results on surface impedance measurements correlated with surface and material characterization for Nb films produced on various substrates, monocrystalline and polycrystalline as well as amorphous. A progress report on work on NbTiN and AlN based multilayer structures will also be presented.
 
 
MOPC117 Advance in Vertical Buffered Electropolishing on Niobium for Particle Accelerators* 352
 
  • A.T. Wu, S. Jin, J.D. Mammosser, C.E. Reece, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
  • L. Lin, X.Y. Lu, K. Zhao
    PKU/IHIP, Beijing, People's Republic of China
 
  Funding: The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.
Niobium (Nb) is the most popular material that has been employed for making superconducting radio frequency (SRF) cavities to be used in various particle accelerators over the last couple of decades. One of the most important steps in fabricating Nb SRF cavities is the final chemical removal of 150 μm of Nb from the inner surfaces of the SRF cavities. This is usually done by either buffered chemical polishing (BCP) or electropolishing (EP). Recently a new Nb surface treatment technique called buffered electropolishing (BEP) has been developed at Jefferson Lab. It has been demonstrated that BEP can produce the smoothest surface finish on Nb ever reported in the literature while realizing a Nb removal rate as high as 10 μm/min that is more than 25 and 5 times quicker than those of EP and BCP(112) respectively. In this contribution, recent advance in optimizing and understanding BEP treatment technique is reviewed. Latest results from RF measurements on BEP treated Nb single cell cavities by our unique vertical polishing system will be reported.
Authored by The Southeastern Universities Research Association, Inc. under U.S. DOE Contract No. DE-AC05-84ER40150.