Author: Pyka, N.
Paper Title Page
TUPS032 Overview of EuCARD Accelerator and Material Research at GSI 1602
 
  • J. Stadlmann, H. Kollmus, E. Mustafin, N. Pyka, P.J. Spiller, I. Strašík, N.A. Tahir, M. Tomut, C. Trautmann
    GSI, Darmstadt, Germany
  • L.H.J. Bozyk
    TU Darmstadt, Darmstadt, Germany
 
  Funding: EuCARD is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 227579
EuCARD is a joined accelerator R&D initiative funded by the EU. Within this program, GSI Darmstadt is performing R&D on materials for accelerators and collimators in WP8(ColMat). GSI covers prototyping and testing of a cryogenic ion catcher for FAIR's main synchrotron SIS100, simulations and studies on activation of accelerator components e.g. halo collimatiors as well as irradiation experiments on materials foreseen to be used in FAIR accelerators and the LHC upgrade program. Carbon-carbon composites, silicon carbide and copper-diamond composite samples have been irradiated with heavy ions at various GSI beamlines and their radiation induced property changes were characterized. Numerical simulations on the possible damage by LHC and SPS beams to different targets have been performed. Simulations and modelling of activation and long term radiation induced damage to accelerator components have started. A prototype ion catcher has been built and first experiments have been performed in 2011. New collaborations with other institutes and industry in the EuCARD framework have been established and findings of the joined R&D effort influence decisions in the FAIR project and LHC upgrade.
 
 
WEPC091 Studies with a Particle Tracking Code for the SIS100 Resonant Extraction System 2220
 
  • M.M. Kirk, G. Franchetti, H. Klingbeil, P. Moritz, N. Pyka, H. Ramakers, P.J. Spiller, H. Welker
    GSI, Darmstadt, Germany
 
  Several issues concerning the envisaged SIS100 resonant extraction at GSI can be resolved with a simulation-lead approach for which a particle tracking code was developed. Applications to date have included: design and testing of data supply algorithms for the accelerator control system; requirements analysis for the power converter ripple in the quadrupoles forming the doublet focusing; and verification of the RF Knock-Out exciter's performance.