Author: Prasuhn, D.
Paper Title Page
THPS003 Status of Stochastic Cooling Predictions at the HESR 3430
 
  • H. Stockhorst, R. Maier, D. Prasuhn, R. Stassen
    FZJ, Jülich, Germany
  • T. Katayama
    GSI, Darmstadt, Germany
 
  Detailed theoretical studies of stochastic cooling have been performed in order to fulfil the requirements for internal target experiments at the High-Energy Storage Ring (HESR) of the future Facility for Antiproton and Ion Research (FAIR) at the GSI in Darmstadt. A Fokker-Planck model and a particle tracking code utilizing the Filter and time-of-flight momentum cooling method have been developed for the 2 to 4 GHz cooling system. A barrier bucket cavity is included to compensate the mean energy loss due to the beam-target interaction. The code has been experimentally verified at the cooler synchrotron COSY. Since the RESR accumulator ring is postponed in the modularized start version of FAIR it is proposed to include the anti-proton accumulation function in the HESR downstream of the Collector Ring. Applying the radial stacking scheme well established at CERN and FNAL would result in a completely new and additional cooling system in the HESR. Instead a different way of beam accumulation has been selected that uses the already designed stochastic cooling system and the barrier bucket cavity of the HESR. Simulation results of the anti-proton accumulation in the HESR are presented.