Author: Pozimski, J.K.
Paper Title Page
MOPC061 Simulations to Flatten the Field of the FETS RFQ 223
 
  • S.R. Lawrie, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  A high performance Radio Frequency Quadrupole (RFQ) is the next major component to be installed on the Front End Test Stand (FETS) at the Rutherford Appleton Laboratory (RAL) in the UK. The beam dynamics, RF, thermal and mechanical designs of the RFQ are almost complete and so the copper has recently been purchased with a view to start cutting metal near Summer-time. This report summarizes the simulation work performed to ensure the RF design is sound. This includes performance studies of the end-wall dipole suppression fingers, tuning the frequency of the input and output vane end regions and implementing a simple solution to remove modulation induced field tilt.  
 
MOPZ009 The Muon Linac for the International Design Study for the Neutrino Factory 838
 
  • A. Kurup, M. Aslaninejad, C. Bonţoiu, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • K.B. Beard
    Muons, Inc, Batavia, USA
  • S.A. Bogacz, V.S. Morozov
    JLAB, Newport News, Virginia, USA
 
  The first stage of muon acceleration in the Neutrino Factory utilises a superconducting linac to accelerate muons from 244 MeV to 900 MeV. The linac is split into three types of cryomodules with decreasing magnetic fields and increasing amounts of RF voltage but with the design of the superconducting solenoid and RF cavities being the same for all cryomodules. The current status of the muon linac for the International Design Study for the Neutrino Factory will be presented including a final lattice design of the linac; electromagnetic simulations; and a preliminary cost estimate.  
 
MOPZ012 The International Design Study for the Neutrino Factory 847
 
  • J.K. Pozimski, A. Kurup, K.R. Long
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • J.S. Berg
    BNL, Upton, Long Island, New York, USA
 
  The International Design Study for the Neutrino Factory (the IDS-NF) has recently completed the Interim Design Report* (IDR) for the facility as a step on the way to the Reference Design Report (RDR). The IDR has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents the present baseline design for the facility which will provide 1021 muon decays per year from 25 GeV stored muon beams. The facility will serve two neutrino detectors; one situated at source-detector distance of between 3000–5000 km, the second at 7000–8000 km. The conceptual design of the accelerator facility will be described and its performance will be presented. The steps that the IDS-NF collaboration has taken since the IDR was finalized and plans to take to prepare the RDR will also be presented.
* IDS-NF-020: https://www.ids-nf.org/wiki/FrontPage/Documentation?action=AttachFile&do=get&target=IDS-NF-020-v1.0.pdf
Submitted on behalf of the IDS-NF collaboration