Author: Posocco, P.A.
Paper Title Page
WEPS045 Feasibility Study of a High-gradient Linac for Hadrontherapy 2589
 
  • S. Verdú-Andrés, U. Amaldi, A. Degiovanni
    TERA, Novara, Italy
  • A. Faus-Golfe, S. Verdú-Andrés
    IFIC, Valencia, Spain
  • P.A. Posocco
    CERN, Geneva, Switzerland
 
  Funding: The research leading to this results has been funded by the Seventh Framework Program [FP7/2007-2013] under grant agreement number 215840-2.
Compact, reliable and little consuming accelerators are needed for tumor treatment with hadrons. As solution, TERA proposes CABOTO (CArbon BOoster for Therapy in Oncology), a linac which boosts the energy of carbon ions and H2 molecules coming from a cyclotron. The linac, typically a Side-Coupled Linac (SCL), is divided into several modules. The beam energy can be varied in steps of about 15 MeV/u without using absorbers by acting on the power (amplitude and/or phase) that feeds the different modules of the linac. This work presents the structure design of a 5.7 GHz high repetition rate SCL for a cyclinac, that accelerates carbon ions from 150 up to 400 MeV/u in less than 25 meters. The beam dynamics for this linac and its particular energy selection system is also discussed for different beam energy outputs.
 
 
WEPS102 Latest News on the Beam Dynamics Design of SPL 2748
 
  • P.A. Posocco, M. Eshraqi, A.M. Lombardi
    CERN, Geneva, Switzerland
 
  SPL is a superconducting H− LINAC under study at CERN. The SPL is designed to accelerate the 160 MeV beam of LINAC4 to 5 GeV, and is composed of two fami¬lies of 704.4 MHz elliptical cavities with geometrical betas of 0.65 and 1.0. Two families of cryo-modules are considered: the low-beta cryo-module houses 3 low-beta cavities, whereas the high-beta one houses 8 cavities. The transverse focusing is performed with normal-conducting quadrupoles arranged in 2 different lattices: FD0 at lower and F0D0 at higher energies. The regular lattices are in-terrupted at the transition between low beta and high beta cryo-modules and for extracting medium energy beams at 1.4 and 2.5 GeV, where the change of the transverse lattice is performed. In this paper the latest beam dynamics studies will be presented together with the sensitivity of the SPL performance to RF errors, alignment tolerances and quadrupole high order components.