Author: Popovic, M.
Paper Title Page
MOPC140 Phase and Frequency Locked Magnetrons for SRF Sources 406
 
  • M.L. Neubauer, M.A.C. Cummings, A. Dudas, R.P. Johnson, R. Sah
    Muons, Inc, Batavia, USA
  • A. Moretti, M. Popovic
    Fermilab, Batavia, USA
 
  Typically, high power sources for accelerator applications are multi-megawatt microwave tubes that may be combined together to form ultra-high-power localized power stations. The RF power is then distributed to multiple strings of cavities through high power waveguide systems which are problematic in terms of expense, efficiency, and reliability. Magnetrons are the lowest cost microwave source in dollars/kW, and they have the highest efficiency (typically greater than 85%). However, the frequency stability and phase stability of magnetrons are not adequate, when magnetrons are used as power sources for accelerators. Novel variable frequency cavity techniques have been developed which will be utilized to phase and frequency lock magnetrons, allowing their use for either individual cavities, or cavity strings. Ferrite or YIG (Yttrium Iron Garnet) materials will be attached in the regions of high magnetic field of radial-vaned, π−mode structures of a selected ordinary magnetron. The microwave characteristics of several materials have been tested with magnetic fields to control the frequency of the magnetron. These results will be presented and an optimum material chosen.  
 
MOPZ016 MICE Step I: First Measurement of Emittance with Particle Physics Detectors* 853
 
  • L. Coney
    UCR, Riverside, California, USA
  • M. Popovic
    Fermilab, Batavia, USA
  • M.A. Rayner
    DPNC, Genève, Switzerland
 
  The muon ionization cooling experiment (MICE) is a strategic R&D project intending to demonstrate the only practical solution to prepare high brilliance beams necessary for a neutrino factory or muon colliders. MICE is under development at the Rutherford Appleton Laboratory (UK). It comprises a dedicated beam line to generate a range of input emittance and momentum, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam is measured in the upstream magnetic spectrometer with a sci-fiber tracker. A cooling cell will then follow, alternating energy loss in Li-H absorbers and RF acceleration. A second spectrometer identical to the first and a second muon identification system measure the outgoing emittance. In the 2010 run the beam and most detectors have been fully commissioned and a first measurement of the emittance of a beam with particle physics (time-of-flight) detectors has been performed. The analysis of these data should be completed by the time of the Conference. The next steps of more precise measurements, of emittance and emittance reduction (cooling), that will follow in 2011 and later, will also be outlined.
Abstract is submitted by the MICE Speakers Bureau.
If accepted, most likely Dr. Kaplan will present it.
As a first result in a novel sector, we propose it for an oral presentation