Author: Podadera, I.
Paper Title Page
MOPC047 RF Design of the Re-buncher Cavities for the LIPAC Deuteron Accelerator 184
 
  • A. Lara, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project ENE2009-11230.
Re-buncher cavities are an essential component of LIPAC (Linear IFMIF Prototype Accelerator), presently being built at Rokkasho (Japan). The deuteron beam exiting from the RFQ (Radio Frequency Quadrupole) structure has to be properly adapted to the superconducting RF (SRF) linac. Re-bunchers are placed in the Medium Energy Beam Transport (MEBT) line and their objective is to longitudinally focus the deuteron beam. IFMIF re-bunchers must provide a 350 kV E0LT at 175 MHz continuous wave (CW). The available length for the re-buncher is limited by the general layout of the MEBT. The high power dissipation derived from the high effective voltage and the short available length is an important design challenge. Four different normal conducting cavity designs were investigated: the pillbox type, double gap coaxial resonators, and multi-gap quarter wave and H resonators. The performance of these cavities was studied with the numerical codes HFSS and ANSYS. The fundamental frequency and field pattern of each re-buncher was investigated in HFSS. This work presents the results of such analyses.
 
 
WEPO014 Magnetic Design of Quadrupoles for the Medium and High Energy Beam Transport line of the LIPAC Accelerator 2424
 
  • C. Oliver, B. Brañas, A. Ibarra, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230.
The LIPAC accelerator will be a 9 MeV, 125 mA cw deuteron accelerator which will verify the validity of the design of the future IFMIF accelerator. A Medium Energy Beam Transport line (MEBT) is necessary to handle the high current beam from the RFQ to the Superconducting RF accelerating cavities (SRF) whereas a High Energy Beam Transport line (HEBT) is used to match the beam from the SRF to the beam dump. The high space charge and beam power determine the beam dynamics in both transport lines. As a consequence, magnets with strong fields in a reduced space are required. Along the transport beamlines, there are different types of quadrupoles with steerers and a dipole. Special care is devoted to maximize the integrated fields in the available space. Both 2-D and 3-D magnetic calculations are used to optimize coil configurations. Magnetic performance and cost, both of magnet and power supply, have been taken into account for final choice. In this paper, the design of the resistive quadrupoles of the MEBT and HEBT of the LIPAC accelerator is presented.
 
 
WEPS058 The Medium Energy Beam Transport Line (MEBT) of IFMIF/EVEDA LIPAc 2628
 
  • I. Podadera, J.C. Calvo, J.M. Carmona, A. Ibarra, D. Iglesias, A. Lara, C. Oliver, F. Toral
    CIEMAT, Madrid, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230.
The IFMIF-EVEDA Linear IFMIF Prototype Accelerator (LIPAc)will be a 9 MeV, 125 mA CW deuteron accelerator which aims to validate the technology that will be used in the future IFMIF accelerator. The acceleration of the beam will be carried out in two stages. An RFQ will increase the energy up to 5 MeV before a Superconducting RF (SRF) linac made of a chain of eight Half Wave Resonators bring the particles to the final energy. Between both stages, a Medium Energy Beam Transport line (MEBT) is in charge of transporting and matching the beam between the RFQ and the SRF. The transverse focusing of the beam is controlled by five quadrupole magnets with integrated steerers, grouped in one triplet and one doublet. Two buncher cavities surrounding the doublet handle the longitudinal dynamics. Two movable collimators are also included to purify the beam optics coming out the RFQ and avoid losses in the SRF. From the inputs of the beam dynamics group, CIEMAT is in charge of designing, manufacturing and integrating all the components of the beamline. In this contribution, the MEBT subsystem will be described and the main objectives and issues for each component will be discussed.
 
 
TUPC125 Test of the Front-end Electronics and Acquisition System for the LIPAC BPMs 1311
 
  • D. Belver, I. Arredondo, P. Echevarria, J. Feuchtwanger, H. Hassanzadegan, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • J.M. Carmona, A. Guirao, A. Ibarra, L.M. Martinez Fresno, I. Podadera
    CIEMAT, Madrid, Spain
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • N. Garmendia, L. Muguira
    ESS Bilbao, Bilbao, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230.
Non-interceptive Beam Position Monitors pickups (BPMs) will be installed along the beamlines of the IFMIF/EVEDA linear prototype accelerator (LIPAC) to measure the transverse beam position in the vacuum chamber in order to correct the dipolar and tilt errors. Depending on the location, the BPMs response must be optimized for a beam of 175 MHz bunch repetition, an energy range from 5 up to 9 MeV, a current between 0.1 and 125 mA and continuous and pulse operation. The requirements from beam dynamics for the BPMs are quite stringent, aiming for the position an accuracy below 100 μm and a resolution below 10 μm, and for the phase an accuracy below 2° and a resolution below 0.3°. To meet these specifications, the BPM electronics system developed by ESS-Bilbao has been adapted for its use with the BPMs of LIPAC. This electronics system is divided in an Analog Front-End unit, where the signals are conditioned and converted to baseband, and a Digital Unit to sample them and calculate the position and phase. The electronics system has been tested at CIEMAT with a wire test bench and a prototype BPM. In this contribution, the tests performed will be fully described and the results discussed.
 
 
WEPO030 Fabrication and Testing of the First Magnet Package Prototype for the SRF Linac of LIPAc 2463
 
  • S. Sanz, J. Calero, F.M. De Aragon, J.L. Gutiérrez, I. Moya, I. Podadera, F. Toral, J.G.S. de la Gama
    CIEMAT, Madrid, Spain
  • N. Bazin, P. Bosland, P. Bredy, N. Grouas, P. Hardy, V.M. Hennion, J. Migne, F. Orsini, B. Renard
    CEA/DSM/IRFU, France
  • G. Disset, J. Relland
    CEA, Gif-sur-Yvette, France
  • H. Jenhani
    CEA/IRFU, Gif-sur-Yvette, France
  • E.N. Zaplatin
    FZJ, Jülich, Germany
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230.
The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA CW deuteron accelerator which aims to validate the technology that will be used in the future IFMIF accelerator. The SRF Linac design is based on superconducting Half Wave Resonators (HWR) cavities operating at 4.4 K. Due to space charge associated to the high intensity beam, a short, but strong, superconducting focusing magnet package is necessary between cavities. The selected configuration has been a superconducting NbTi solenoid acting as a magnetic lens and a concentric outer solenoid in antiparallel configuration to reduce the dangerous stray field on the cavities. The selected arrangement for the steerers is a pair of parallel racetrack coils for each vertical and horizontal axis. This paper describes the manufacturing techniques of the different coils, and the test realized in warm and cold conditions, with special attention to the training test of the main solenoid, as the nominal working point in the load line is very high (86.2%).
 
 
THPS059 Thermo-mechanical Design of Particle-stopping Devices at the High Energy Beamline Sections of the IFMIF/EVEDA Accelerator 3562
 
  • D. Iglesias, F. Arranz, B. Brañas, J.M. Carmona, N. Casal, A. Ibarra, C. Oliver, M. Parro, I. Podadera, D. Rapisarda
    CIEMAT, Madrid, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230.
The IFMIF/EVEDA linear accelerator is a 9 MeV, D+ prototype for the validation of the 40 MeV final IFMIF design. The high intensity, 125 mA CW, high power beam (1.125 MW) produces an extremely high thermal load in all the elements intercepting the ions. Independently of the final purpose of each device, if its working conditions imply stopping a non-negligible amount of particles, the associated thermal solicitation greatly determines the design constraints. The present work will summarize a thermo-mechanical design workflow that can be applied to any beam facing element of high current accelerators and its application in beam dump, scrappers and slits design. This approach is based on analysis experiences at the IFMIF/EVEDA project and, while taking into account the particularities of each device, uses the same tools and parameter evaluation criteria for all of them. It has been applied successfully to recent designs, effectively reducing the number of iterations before achieving a valid thermo-mechanical behavior. Results of each design and the concrete advantages of this approach will be detailed.