Author: Petenev, Y.
Paper Title Page
MOPS051 Modeling of the Beam Break Up Instability for BERLinPro* 718
 
  • Y. Petenev, A.V. Bondarenko, A.N. Matveenko
    HZB, Berlin, Germany
 
  Following funding approval late 2010, Helmholtz-Zentrum Berlin officially started Jan. 2011 the design and construction of the Berlin Energy Recovery Linac Project BERLinPro. The initial goal of this compact ERL is to develop the ERL accelerator physics and technology required to accelerate a high-current low emittance beam. In this work the threshold current of the Beam Break Up (BBU) instability was calculated for the BERLinPro. The comparison of two 100 MeV linacs based on different type of superconducting cavities is made. Different methods of BBU suppression are investigated (e.g. the influence of solenoid, pseudo-reflector and quadruple triplets in the linac structure on the BBU threshold).  
 
TUPO029 Status of the BERLinPro Optics Design 1500
 
  • A.N. Matveenko, M. Abo-Bakr, A.V. Bondarenko, A. Jankowiak, J. Knobloch, B.C. Kuske, Y. Petenev
    HZB, Berlin, Germany
 
  Following funding approval late 2010, Helmholtz-Zentrum Berlin officially started Jan. 2011 the design and construction of the Berlin Energy Recovery Linac Project BERLinPro. The initial goal of this compact ERL is to develop the ERL accelerator physics and technology required to accelerate a high-current (100 mA) low emittance beam (1 mm•mrad normalized), as required for future ERL-based synchrotron light sources. Given the flexibility ERLs provides, a short bunch operation mode will also be investigated. Current optics was designed to allow of low emittance and short bunch operation modes. Optics is flexible to suppress BBU and minimize CSR effects. Estimation of impact of ion accumulation, wake fields, halo and chromatic aberrations is given. Requirements for beam diagnostic system, alignment accuracy and power supply stability are investigated.