Author: Nakano, H.
Paper Title Page
THPZ009 Beam Background Simulation for SuperKEKB/Belle-II 3699
 
  • H. Nakano, H. Yamamoto
    Tohoku University, Graduate School of Science, Sendai, Japan
  • K. Kanazawa, H. Nakayama, Y. Ohnishi
    KEK, Ibaraki, Japan
  • C. Kiesling, S. Koblitz, A. Moll, M. Ritter
    MPI-P, München, Germany
 
  The Belle experiment is now being upgraded to the Belle II experiment designed for a 40 times higher luminosity. Such a high luminosity is realized by the SuperKEKB collider where beam-induced background rates are expected to be much higher than those of KEKB. This poses a serious challenge for the design of the machine-detector interface. We have thus carried out a GEANT4-based beam background simulation for Touschek effect. We describe the method of generating background particles and present the result of simulation.  
 
THPZ010 Beam Background and MDI Design for SuperKEKB/Belle-II 3702
 
  • H. Nakayama, M. Iwasaki, K. Kanazawa, Y. Ohnishi, S. Tanaka, T. Tsuboyama
    KEK, Ibaraki, Japan
  • H. Nakano
    Tohoku University, Graduate School of Science, Sendai, Japan
 
  The Belle experiment, operated at the asymmetric electron-positron collider KEKB, had accumulated a data sample with an integrated luminosity of more than 1 at-1before the shutdown in June 2010. We have started upgrading both the accelerator and detector, SuperKEKB and Belle-II, to achieve the target luminosity of 8x1035 cm-2s-1. With the increased luminosity, the beam background will also increase. The development of Machine-Detector Interface (MDI) design is very important to cope with the increased background and protect Belle-II detector. We will present the estimation of impact from each beam background sources at SuperKEKB and our countermeasures for them, such as collimators to stop Touschek-scattered beam particles, Tungsten shield to protect inner detectors from shower particles, dedicated beam pipe design around interaction point to stop synchrotron radiation, etc.