Author: Nakamura, N.
Paper Title Page
THPS065 Upgraded X-band 950 KeV Linac X-ray Source for On-site Inspection at Petrochemical Complex 3574
 
  • M. Jin, K. Demachi, K. Dobashi, H.F. Jin, T. Natsui, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • J. Kusano, N. Nakamura, M. Yamamoto
    Accuthera Inc., Kawasaki, Kanagawa, Japan
  • E. Tanabe
    AET, Kawasaki-City, Japan
 
  Abstract―Our portable X-band (9.3GHz) 950KeV linac has been successfully upgraded. The problems of RF power oscillation, beam current oscillation and reduction and finally lack of X-ray intensity were solved by replacing the axial coupling cavities with the side-coupled ones. Designed X-ray dose rate of 0.05 Sv/min@1m is going to be achieved. Length of the accelerating tube is reduced to less than 25 cm. X-ray source part with the local radiation shielding is connected by the flexible waveguide with the box of the 300 kW magnetron and cooling unit. The total system consists of the three suit-case-size units, the last of which is one for the electric power supply. Even on-line dynamic transmission imaging is available by using the high intensity X-ray camera. Demonstration of the measurement of wall thinning of metal pipes with thick thermal shielding is under way. Updated measurement results will be presented. KEYWORDS: portable X-band linac X-ray source, on-site high energy X-ray inspection, petrochemical complex  
 
WEOAA03 Approach to a Start-to-end Simulation of 2-loop Compact Energy Recovery Linac 1909
 
  • M. Shimada, K. Harada, Y. Kobayashi, T. Miyajima, N. Nakamura, S. Sakanaka
    KEK, Ibaraki, Japan
  • R. Hajima
    JAEA, Ibaraki-ken, Japan
 
  Transport of an extreme low emittance electron beam is critical issue in an energy recovery linac. In particlar, the space charge effect on an electron bunch in the injector with lower than 5 - 10 MeV induces a large emittance growth. To suppress the emittance growth by such as an optimization of the solenoid magnets, a nonlinear effect should be clarified by a three dimensional tracking simulation. The cons is that it consumes a enormous simulation time. The approach is not suitable for a double loop circulation because the simulation time depends on the transport length. Therefore the beam dynamics and optics are calculated by a start-to-end (S2E) simulation, in which the simulation code is switched after the full acceleration. We used 'general particle tracking (GPT)' for injector electron beam and 'elegant' for a circulator electron beam.  
slides icon Slides WEOAA03 [3.951 MB]  
 
THPC034 Post-earthquake Recovery of PF Ring and PF-AR 2984
 
  • T. Honda, T. Aoto, S. Asaoka, K. Endo, K. Haga, K. Harada, Y. Honda, M. Izawa, Y. Kobayashi, A. Mishina, T. Miyajima, H. Miyauchi, S. Nagahashi, N. Nakamura, T. Nogami, T. Obina, T. Ozaki, C.O. Pak, H. Sakai, S. Sakanaka, H. Sasaki, Y. Sato, K. Satoh, M. Shimada, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, R. Takai, Y. Tanimoto, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, M. Yamamoto
    KEK, Ibaraki, Japan
 
  When the unprecedented scale of earthquake occurred in Japan on the afternoon of March 11, 2011, PF ring and PF-AR, two synchrotron light sources in KEK, also suffered various damages. At PF ring, a formed bellows in a wall current monitor was broken, and atmospheric air rushed into the beam duct. At PF-AR, which is installed in the underground tunnel, the alignment of the ring magnets seemed to be disordered to an order of ten mm. At both rings, a lot of electronics racks and toolboxes in the control rooms or in the experimental halls were tilted or tipped over. It was extremely fortunate that the user operation had just been stopped on the morning of that day, and all the gate valves in the rings and to the beam lines had already been closed for the scheduled shutdown. A wide area blackout took place at the big earthquake, and the electric power for the accelerator was interrupted over the next two weeks because of temporal shortage of the electricity in the eastern part of Japan. In April, we could start detailed investigation of machine damages and repair works towards recommissioning of the rings before the summer and resumption of the user operations in the autumn.