Author: Mitrochenco, V.
Paper Title Page
MOPS033 Beam Dynamics Studies on the 100 MeV/100 kW Electron Linear Accelerator for NSC KIPT Neutron Source 673
 
  • S. Pei, Y.L. Chi, M. Hou, W.B. Liu, G. Pei, S.H. Wang, Z.S. Zhou
    IHEP Beijing, Beijing, People's Republic of China
  • N. Aizatsky, I.M. Karnaukhov, V.A. Kushnir, V. Mitrochenco, A.Y. Zelinsky
    NSC/KIPT, Kharkov, Ukraine
 
  We designed one 100MeV/100kW electron linear accelerator for NSC KIPT, which will be used to drive a neutron source on the base of subcritical assembly. Beam dynamics studies has been conducted to reach the design requirement (E=100MeV, P=100kW, dE/E<1% for 99% particles). In this paper, we will present the progress of the design and dynamics simulation results. For high intensity and long beam pulse linear accelerators, BBU effect is one big issue; special care has been taken in the accelerating structure design. To satisfy the energy spread requirement at the linac exit, the particles with large energy difference from the synchronous particle should be eliminated at low energy stage to ease the design of the collimation system and radiation shielding. A dispersion free chicane with 4 bending magnets is introduced at the downstream of the 1st accelerating section; the unwanted particles will be collimated there.