Author: Mertens, T.
Paper Title Page
TUPZ017 Luminosity and Beam Parameter Evolution for Lead Ion Beams in the LHC 1840
 
  • J.M. Jowett, R. Bruce, T. Mertens
    CERN, Geneva, Switzerland
 
  Heavy ion beams in the LHC are subject to strong blow-up and debunching effects from intra-beam scattering and luminosity-driven beam losses. The large nuclear charge is at the origin of these effects, both in the cross sections for simple Coulomb scattering and the ultraperipheral interactions occurring in the collisions. We compare predictions from our models with data on luminosity, beam size and intensity evolution from the first heavy ion run of the LHC. This analysis has to take account of the varying capabilities of the LHC beam instrumentation between injection and collision energies.  
 
TUPZ019 Transverse Emittance Preservation through the LHC Cycle 1843
 
  • V. Kain, B. Goddard, B.J. Holzer, J.M. Jowett, M. Meddahi, T. Mertens, F. Roncarolo
    CERN, Geneva, Switzerland
 
  The preservation of the transverse emittance is crucial for luminosity performance. At the LHC design stage the total allowed emittance increase was set to 7% throughout the LHC cycle. The proton run in 2010 showed that the injectors can provide beams with smaller emittances than nominal and higher bunch intensities. The LHC parameters are well under control and the emittances are kept below nominal until physics. The LHC luminosity goals for the first year of running could therefore be achieved with fewer bunches than initially foreseen. This paper will report on the measured emittance growth at injection from the SPS and the evolution of the emittance through the entire LHC cycle. Sources and possible cures for the observed emittance growth will be discussed.