Author: Marteau, F.
Paper Title Page
TUODB03 Innovative Design of the Fast Switching Power Supplies for the SOLEIL EMPHU Insertion and its Fast Correctors 982
 
  • F. Bouvet, D. Aballea, R. Ben El Fekih, S. Bobault, M. Bol, Y. Bouanani, Y. Dietrich, A. Hardy, F. Marteau
    SOLEIL, Gif-sur-Yvette, France
 
  A new electromagnetic/permanent magnets helical undulator has been designed and is under commissioning at SOLEIL. For a fast switching of the photon polarization, it requires a power supply able to switch between +/–350 A within 50 ms, without any current overshoot and with a very good current resolution over the full scale (50 ppm). The in-house design is based on two full switching bridges with interleaved commands. Combined with a regulation scheme using sophisticated algorithms, such a design enables to reach a high control bandwidth, permitting fast transitions. Such a fast and accurate system needs well performing digital control electronics. We chose the digital control cards developed at Paul Scherrer Institute (Villigen CH) for the SLS (Swiss Light Source). The components, measurements, interlocks, control interfaces, and electronic cards were developed and assembled together at SOLEIL. This paper will present the main lines of this development and the performances achieved during the EMPHU insertion commissioning. The design of the fast power supplies (±20 A) needed for corrector magnets of this insertion will also be presented.  
slides icon Slides TUODB03 [3.017 MB]  
 
THPC150 Review of Insertion Device Dedicated to HIgh Energy Photons at SOLEIL 3236
 
  • O. Marcouillé, C. Benabderrahmane, P. Berteaud, F. Briquez, L. Chapuis, M.-E. Couprie, T.K. El Ajjouri, F. Marteau, M. Valléau, J. Vétéran
    SOLEIL, Gif-sur-Yvette, France
 
  Producing high energy photons between 10 keV and 70 keV is a challenging topic in a medium energy storage ring. It requires up-to-date measurement techniques and specific Insertion Device (ID) technologies to produce high magnetic fields and short periods. SOLEIL (2.75 GeV) has designed and built eight conventional in-vacuum hybrid undulators operating at high radiation harmonics and also one small gap multipole wiggler to produce high magnetic field. The construction has been progressively improved by the choice of new magnetic materials of better quality and higher magnetization, additional correction techniques and mechanical changes. A 2-m long full scale cryogenic undulator made of PrFeB and vanadium permendur has been built, measured, corrected and is to be tested on the beam. An additional wiggler dedicated for Slicing experiments has been designed. The required magnetic field is high enough to also consider the ID as a good candidate for the production of hard X-ray photons. This paper presents the ID dedicated for the high energy photons and their spectral performances.  
 
THPC151 The 65 mm Period Electromagnetic/Permanent Magnets Helical Undulator at SOLEIL 3239
 
  • F. Marteau, P. Berteaud, F. Bouvet, L. Chapuis, M.-E. Couprie, J.P. Daguerre, T.K. El Ajjouri, J.-M. Filhol, P. Lebasque, J.L. Marlats, A. Mary, K. Tavakoli
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL prepares a new 65 mm period Electromagnetic/Permanent Magnets Helical Undulator (EMPHU), with a rapid switching at 5 Hz of the polarization required for dichroïsm experiments. The vertical field Bz is produced by coils fed by a fast switching power supply (designed and built in house), with a maximum current of 350 A and a polarity switching time shorter than 100 ms. The coils consist of 25 stacked copper layers shaped by water jet cutting. The current flows in 16 layers and 9 of them are cooled with thermal drain to a water piping. 4 additional power supplies feed 2 types of correction coils for the dynamic compensation of the field integrals, besides the ones for the termination. 1.28 T remanence NdFeB permanent magnets generate the horizontal field Bx. Peak Bz and Bx in the helical configuration reach 0.24 T at 14.7 mm minimum gap. Thermal modelling and measurements aim at keeping the magnet temperature constant. The static magnetic configuration was optimised using the IDBuilder software and the trajectory were checked for insuring a good reproducibility of the photon beam pointing when sweeping from one helicity to the other.  
 
THPC152 Measurements of SOLEIL Insertion Devices using Pulsed Wire Method 3242
 
  • M. Valléau, C. Benabderrahmane, M.-E. Couprie, O. Marcouillé, F. Marteau, J. Vétéran
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL permanent magnets insertion devices are usually measured with a Hall probe in order to evaluate the electron angular deflexion, their deviation and the optical phase error, a figure of merit related to the quality of the insertion device radiation. A pulsed wire bench is developed at SOLEIL for reducing the measurement time of an undulator and for providing a measurement method without lateral access. A current pulse injected in a stretched wire inside the magnetic field area generates acoustic wave. The wire motion is detected by optical sensors whose signals are proportional to the local integral value. The signal-to-noise ratio of this method is often reduced due to several effects such as electronic noise, external and wire vibrations. However, following some hardware optimization it was possible to increase it up to almost 26 dB, making the method accurate and reproducible in order to realize efficient corrections. Measurements of first and second integral performed with Pulse wire, with Hall probe and with the electron beam are compared on three different types of insertions: an U18 in-vacuum cryogenic undulator, a HU60 APPLE-II undulator and a WSV50 in-vacuum wiggler.