Author: Marshall, T.C.
Paper Title Page
THPC169 Short-Period RF Undulator for a Nanometer SASE Source 3293
 
  • S.V. Kuzikov, M.E. Plotkin, A.A. Vikharev
    IAP/RAS, Nizhny Novgorod, Russia
  • J.L. Hirshfield
    Yale University, Physics Department, New Haven, CT, USA
  • T.C. Marshall, G.V. Sotnikov
    Omega-P, Inc., New Haven, Connecticut, USA
 
  Funding: Sponsored in part by US Department of Energy, Office of High Energy Physics.
A room-temperature RF undulator to produce ~1 nm wavelength radiation using a relatively low energy electron beam (0.5 GeV) is considered. The design features include an effective undulator period of 0.45 cm, an undulator parameter of K = 0.4, an effective field length of 50 cm. These parameters could be be realized using a multi-MW RF power amplifier to drive the undulator (e.g., the 34 GHz pulsed magnicon at Yale or a 30 GHz gyroklystron at IAP) with microsecond pulse duration. Two undulator designs were considered that avoid problems with a co-propagating wave: a dual-mode cylindrical cavity [TE01 (counter propagating) - TE02 (co-propagating)] with an off-axis electron beam; and a traveling HE11 mode resonant ring with an on-axis beam.