Author: Mäder, D.
Paper Title Page
MOPC006 A Coupled RFQ-IH Combination for the Neutron Source FRANZ 74
 
  • M. Heilmann, O. Meusel, D. Mäder, U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  Funding: HIC for FAIR
The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum is driven by a 2 MeV proton linac consisting of a 4-rod-radio-frequency-quadrupol (RFQ) and an 8 gap IH-DTL structure. RFQ and IH cavity will be powered by only one radio frequency (RF) amplifier to reduce costs. The RF-amplifier of the RFQ-IH combination is coupled into the RFQ. Internal inductive coupling along the axis connects the RFQ with the IH cavity ensuring the required power transition as well as a fixed phase relation between the two structures. The main acceleration of 120 keV up to 2.03 MeV will be reached by the RFQ-IH combination with 175 MHz and at a total length of 2.3 m. The losses in the RFQ-IH combination are about 200 kW.
 
 
WEPS038 Development of CH-Cavities for the 17 MeV MYRRHA-Injector 2571
 
  • D. Mäder, H. Klein, H. Podlech, U. Ratzinger, M. Vossberg, C. Zhang
    IAP, Frankfurt am Main, Germany
 
  Funding: European Union FP7 MAX Contract Number 269565
MYRRHA is conceived as an accelerator driven system (ADS) for transmutation of high level nuclear waste. The neutron source is created by coupling a proton accelerator of 600 MeV with a 4 mA proton beam, a spallation source and a sub-critical core. The IAP of Frankfurt University is responsible for the development of the 17 MeV injector operated at 176 MHz. The injector consists of a 1.5 MeV 4-Rod-RFQ and six CH-drifttube-structures. The first two CH-structures will be operated at room temperature and the other CH-structures are superconducting cavities assembled in one cryo-module. To achieve the extremely high reliability required by the ADS application, the design of the 17 MeV injector has been intensively studied, with respect to thermal issues, minimum peak fields and field distribution.
 
 
WEPS039 General Layout of the 17 MeV Injector for MYRRHA 2574
 
  • H. Podlech, M. Busch, F.D. Dziuba, H. Klein, D. Mäder, U. Ratzinger, A. Schempp, R. Tiede, C. Zhang
    IAP, Frankfurt am Main, Germany
  • M. Amberg
    HIM, Mainz, Germany
 
  Funding: European Union FP7 MAX Contract Number 269565
The MYRRHA Project (Multi Purpose Hybrid Reactor for High Tech Applications) at Mol/belgium will be a user facility with emphasis on research with neutron generated by a spallation source. One main aspect is the demonstration of nuclear waste technology using an accelerator driven system. A superconducting linac delivers a 4 mA, 600 MeV proton beam. The first accelerating section is covered by the 17 MeV injector. It consists of a proton source, an RFQ, two room temperature CH cavities and 4 superconducting CH-cavities. The initial design has used an RF frequency of 352 MHz. Recently the frequency of the injector has been set to 176 MHz. The main reason is the possible use of a 4-rod-RFQ with reduced power dissipation and energy, respectively. The status of the overall injector layout including cavity design is presented.
 
poster icon Poster WEPS039 [2.281 MB]  
 
WEPS040 The Driver Linac of the Neutron Source FRANZ 2577
 
  • U. Ratzinger, B. Basten, L.P. Chau, H. Dinter, M. Droba, M. Heilmann, M. Lotz, O. Meusel, I. Müller, D. Mäder, Y.C. Nie, D. Noll, H. Podlech, A. Schempp, W. Schweizer, K. Volk, C. Wiesner, C. Zhang
    IAP, Frankfurt am Main, Germany
 
  FRANZ is under construction at the Goethe University Frankfurt. A 2MeV ± 100 keV proton beam will produce 1 keV to 200 keV neutrons on a Li7 target. Experiments are planned in the field of nuclear astrophysics as well as in applied physics. A dc operated proton source with a maximum beam current of 200 mA was successfully beam tested end of 2010. FRANZ will have two experimental areas: One for activation experiments with cw proton beams of a few mA generating a usable neutron flux of some 10 billion per square cm per second, the other one for 250 kHz, 1 ns short neutron bunches generated by 1 ns proton pulses of a few Ampere beam current. A special 2 MeV, 175 MHz high current cavity is realized at present as a RFQ-DTL combination. Novel techniques have been invented to reach the needed pulsed target beam current by a bunch compressor system.
Work supported by HICforFAIR and GSI.
 
 
WEPS043 From EUROTRANS to MAX: New Strategies and Approaches for the Injector Development 2583
 
  • C. Zhang, H. Klein, D. Mäder, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main, Germany
 
  Funding: The research leading to these results has received funding from the European Atomic Energy Community’s (Euratom) Seventh Framework Programme FP7/2007-2011 under grant agreement n° [269565].
As the successor of the EUROTRANS project, the MAX project is aiming to continue the R&D effects for a European Accelerator-Driven System and to bring the conceptual design to reality. The layout of the driver linac for MAX will follow the reference design made for the XT-ADS phase of the EUROTRANS project. For the injector part, new design strategies and approaches, e.g. half resonant frequency, half transition-energy between the RFQ and the CH-DTL, and using the 4-rod RFQ structure instead of the originally proposed 4-vane RFQ, have been conceived and studied to reach a more reliable CW operation at reduced costs. In this paper, the design and simulation results of the MAX injector are presented.