Author: Li, S.Z.
Paper Title Page
WEOAB02 FACET: The New User Facility at SLAC 1953
 
  • C.I. Clarke, F.-J. Decker, R.A. Erickson, C. Hast, M.J. Hogan, R.H. Iverson, S.Z. Li, Y. Nosochkov, N. Phinney, J. Sheppard, U. Wienands, W. Wittmer, M. Woodley, G. Yocky
    SLAC, Menlo Park, California, USA
  • A. Seryi
    JAI, Oxford, United Kingdom
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
FACET (Facility for Advanced Accelerator and Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. Its high power electron and positron beams make it a unique facility, ideal for beam-driven Plasma Wakefield Acceleration studies. The first 2 km of the SLAC linac produce 23 GeV, 3.2 nC electron and positron beams with short bunch lengths of 20 um. A final focusing system can produce beam spots 10um wide. User-aided Commissioning took place in summer 2011 and FACET will formally come online in early 2012. We present the User Facility, the current features, planned upgrades and the opportunities for further experiments.
 
slides icon Slides WEOAB02 [4.772 MB]  
 
WEPZ023 Results from Plasma Wakefield Acceleration Experiments at FACET 2814
 
  • S.Z. Li, C.I. Clarke, R.J. England, J.T. Frederico, S.J. Gessner, M.J. Hogan, R.K. Jobe, M.D. Litos, D.R. Walz
    SLAC, Menlo Park, California, USA
  • E. Adli
    University of Oslo, Oslo, Norway
  • W. An, C.E. Clayton, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, S. Tochitsky
    UCLA, Los Angeles, California, USA
  • P. Muggli
    USC, Los Angeles, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE- AC02-76SF00515.
We report initial results of the Plasma Wakefield Acceleration (PWFA) Experiments performed at FACET - Facility for Advanced aCcelertor Experimental Tests at SLAC National Accelerator Laboratory. At FACET a 23 GeV electron beam with 1.8x1010 electrons is compressed to 20 microns longitudinally and focused down to 10 microns x 10 microns transverse spot size for user driven experiments. Construction of the FACET facility completed in May 2011 with a first run of user assisted commissioning throughout the summer. The first PWFA experiments will use single electron bunches combined with a high density lithium plasma to produce accelerating gradients >10GeV/m benchmarking the FACET beam and the newly installed experimental hardware. Future plans for further study of plasma wakefield acceleration will be reviewed.
 
 
WEPZ028 Status of Plasma Electron Hose Instability Studies in FACET 2826
 
  • E. Adli
    University of Oslo, Oslo, Norway
  • W. An, W.B. Mori
    UCLA, Los Angeles, California, USA
  • R.J. England, J.T. Frederico, M.J. Hogan, S.Z. Li, M.D. Litos, Y. Nosochkov
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by the Research Council of Norway, the Fulbright Visiting Scholar Program and US DOE contract DE-AC02-76SF00515.
In the FACET plasma-wakefield acceleration experiments a dense 23 GeV electron beam will interact with lithium and cesium plasmas, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons may lead to a fast growing electron hose instability. By using optics dispersion knobs to induce a controlled z-x tilt along the beam entering the plasma, we investigate the transverse behavior of the beam in the plasma as function of the tilt. We seek to quantify limits on the instability in order to further explore potential limitations on future plasma wakefield accelerators due to the electron hose instability.