Author: Laxdal, R.E.
Paper Title Page
MOPC126 High Power RF System for TRIUMF E-Linac Injector 373
 
  • A.K. Mitra, Z.T. Ang, S. Calic, S.R. Koscielniak, R.E. Laxdal, R.W. Shanks, Q. Zheng
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  TRIUMF has been funded to build the first stage of an electron linac with a final energy of 50 MeV and 500 kW beam power. The e-linac consists of an injector section with electron gun with 650 MHz rf modulated grid, a room temperature 1.3 GHz buncher cavity, and injector cryomodule, and two main-linac cryomodules for the accelerating section to be installed sequentially. The injector module has one 9 cell cavity whereas each of the accelerating cryomodules contains two 9-cell SC cavities. The injector cryomodule will be fed by a 30 kW cw Inductive Output Tube (IOT)and the accelerating cryomodule will be powered by a cw klystron. A first goal is a beam test of the e-Linac injector to 10MeV in 2012. Installation and full rated output power tests of the IOT on a 50 ohms load have been carried out. The IOT is purchased from CPI, USA while the transmitter is sourced from Bruker BioSpin. A power coupler conditioning station utilizes the same IOT. The buncher cavity is driven from a Bruker 600W amplifier. In this paper, the conceptual design of the e-Linac rf system will be summarized and the high power rf system for the injector including IOT measurement results will be presented.
SC stands for superconducting
 
 
TUPC065 Upgrade of the ISAC Time-of-flight System 1147
 
  • V.A. Verzilov, J. Lassen, R.E. Laxdal, M. Marchetto
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  The ISAC facility at TRIUMF produces stable and radioactive ion beams in a wide range of intensities and energies. The beam diagnostics was designed to support the beam delivery in every possible operating regime. Thus, the time-of-flight system is capable of measuring the beam velocity with accuracy of better than 0.1% at beam intensities from 1011 down to ~ 104 ions per second. It consists of three high resolution timing secondary electron emission monitors and has been in operation since 2006. Recently all three monitors were rebuilt with the aim to facilitate monitor alignment with respect to the beam. The system was also equipped with an UV laser that allows perform an accurate absolute calibration and monitor tuning with no beam present.  
 
WEOBA01 ARIEL: TRIUMF’s Advanced Rare IsotopE Laboratory 1917
 
  • L. Merminga, F. Ames, R.A. Baartman, C.D. Beard, P.G. Bricault, I.V. Bylinskii, Y.-C. Chao, R.J. Dawson, D. Kaltchev, S.R. Koscielniak, R.E. Laxdal, F. Mammarella, M. Marchetto, G. Minor, A.K. Mitra, Y.-N. Rao, M. Trinczek, A. Trudel, V.A. Verzilov, V. Zvyagintsev
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  TRIUMF has recently embarked on the construction of ARIEL, the Advanced Rare Isotope Laboratory, with the goal to significantly expand the Rare Isotope Beam (RIB) program for Nuclear Physics and Astrophysics, Nuclear Medicine and Materials Science. ARIEL will use proton-induced spallation and electron-driven photo-fission of ISOL targets for the production of short-lived rare isotopes that are delivered to experiments at the existing ISAC facility. Combined with ISAC, ARIEL will support delivery of three simultaneous RIBs, up to two accelerated, new beam species and increased beam development capabilities. The ARIEL complex comprises a new SRF 50 MeV 10 mA CW electron linac photo-fission driver and beamline to the targets; one new proton beamline from the 500 MeV cyclotron to the targets; two new high power target stations; mass separators and ion transport to the ISAC-I and ISAC-II accelerator complexes; a new building to house the target stations, remote handling, chemistry labs, front-end and a tunnel for the proton and electron beamlines. This report will include overview of ARIEL, its technical challenges and solutions identified, and status of design activities.  
slides icon Slides WEOBA01 [3.676 MB]