Author: Lallement, J.-B.
Paper Title Page
TUOAA03 The Linac4 Project at CERN 900
 
  • M. Vretenar, L. Arnaudon, P. Baudrenghien, C. Bertone, Y. Body, J.C. Broere, O. Brunner, M.C.L. Buzio, C. Carli, F. Caspers, J.-P. Corso, J. Coupard, A. Dallocchio, N. Dos Santos, R. Garoby, F. Gerigk, L. Hammouti, K. Hanke, M.A. Jones, I. Kozsar, J.-B. Lallement, J. Lettry, A.M. Lombardi, L.A. Lopez Hernandez, C. Maglioni, S.J. Mathot, S. Maury, B. Mikulec, D. Nisbet, C. Noels, M.M. Paoluzzi, B. Puccio, U. Raich, S. Ramberger, C. Rossi, N. Schwerg, R. Scrivens, G. Vandoni, J. Vollaire, S. Weisz, Th. Zickler
    CERN, Geneva, Switzerland
 
  As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the Proton-Synchrotron Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the LHC schedule for long shut-downs.  
slides icon Slides TUOAA03 [10.347 MB]  
 
THPS052 Studies on Transverse Painting for H Injection into the PSB 3544
 
  • C. Bracco, C. Carli, T. Fowler, B. Goddard, G. Gräwer, J.-B. Lallement, M. Martini, M. Scholz, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  Linac4 will inject 160 MeV H− ions in to the CERN PS Booster (PSB). This will allow to reduce space charge effects and increase beam intensity but will require a substantial upgrade of the injection region, with the implementation of a charge-exchange multi-turn injection scheme. The PSB has to provide beam to several users with different requirements in terms of beam intensity and emittance. Four kicker magnets (KSW), which are already installed in the PSB lattice, will be used to accomplish painting in the horizontal phase space to match the injected beams to the required emittances. Double linear functions, with varying slopes for each user, have been defined for the KSW generators waveforms according to detailed beam dynamic studies for all target intensities and emittances. Effect of space charge, injection offsets, dispersion and betatron mismatch have been taken into account. Preliminary studies have been carried out to evaluate how to obtain the required vertical emittance and the option of a transverse painting, also in the vertical plane, is explored.