Author: Kollmus, H.
Paper Title Page
TUPS007 Construction and Test of a Cryocatcher Prototype for SIS100* 1527
 
  • L.H.J. Bozyk, D.H.H. Hoffmann
    TU Darmstadt, Darmstadt, Germany
  • H. Kollmus, P.J. Spiller, M. Wengenroth
    GSI, Darmstadt, Germany
 
  Funding: EU-FP-7 project COLMAT, FIAS
The main accelerator, SIS100, of the FAIR-facility will provide heavy ion beams of highest intensities. Ionization beam loss is the most important loss mechanism at operation with high intensity, intermediate charge state heavy ions. A special synchrotron design has been developed for SIS100, aiming for hundred percent control of ionization beam loss by means of a dedicated cold ion catcher system. To suppress dynamic vacuum effects, the cryo catcher system shall also provide a significantly reduced effective desorption yield. The construction and tests of a prototype cryo ion catcher is a workpackage of the EU-FP-7 project COLMAT. A prototype test setup including cryostat has been constructed, manufactured and tested at GSI under realistic conditions with heavy ion beams of the of the heavy ion synchrotron SIS18. The design and results are presented.
 
 
TUPS032 Overview of EuCARD Accelerator and Material Research at GSI 1602
 
  • J. Stadlmann, H. Kollmus, E. Mustafin, N. Pyka, P.J. Spiller, I. Strašík, N.A. Tahir, M. Tomut, C. Trautmann
    GSI, Darmstadt, Germany
  • L.H.J. Bozyk
    TU Darmstadt, Darmstadt, Germany
 
  Funding: EuCARD is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 227579
EuCARD is a joined accelerator R&D initiative funded by the EU. Within this program, GSI Darmstadt is performing R&D on materials for accelerators and collimators in WP8(ColMat). GSI covers prototyping and testing of a cryogenic ion catcher for FAIR's main synchrotron SIS100, simulations and studies on activation of accelerator components e.g. halo collimatiors as well as irradiation experiments on materials foreseen to be used in FAIR accelerators and the LHC upgrade program. Carbon-carbon composites, silicon carbide and copper-diamond composite samples have been irradiated with heavy ions at various GSI beamlines and their radiation induced property changes were characterized. Numerical simulations on the possible damage by LHC and SPS beams to different targets have been performed. Simulations and modelling of activation and long term radiation induced damage to accelerator components have started. A prototype ion catcher has been built and first experiments have been performed in 2011. New collaborations with other institutes and industry in the EuCARD framework have been established and findings of the joined R&D effort influence decisions in the FAIR project and LHC upgrade.