Author: Jago, S.J.S.
Paper Title Page
TUPS048 Equipment and Techniques for the Replacement of the ISIS Proton Beam to Target Window 1638
 
  • S.D. Gallimore, S.J.S. Jago
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS Spallation Neutron Source has been in operation at the Rutherford Appleton Laboratory for over 25 years. Much of the original equipment installed during the construction of the facility is still in operation. The window separating the proton beam transfer line from the neutron target is a key component in the accelerator complex. During the operational life of the Beam Entry Window it has absorbed a considerable amount of energy deposited from the proton beam as it passes from the accelerator vacuum to the target area. Due to the difficulties in accessing and handling the window assembly, a decision was made to replace this component in a planned maintenance period. This paper describes the specialist remote handling equipment and techniques that were developed during the 3 year build up to the removal and replacement of the of the highly active Beam Entry Window.  
 
WEPO021 Quadrupole Magnet with an Integrated Dipole Steering Element for the ISIS Beam Transport Line 2445
 
  • S.J.S. Jago, J. Shih, S.F.S. Tomlinson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.M. Gurov
    BINP SB RAS, Novosibirsk, Russia
 
  A refurbishment of beam transport line to the original ISIS target station at the Rutherford Appleton Laboratory has recently been completed. This work involved a slight change to the optics in the area, which included the requirement for extra steering capabilities. Due to the space constraints in the region, a quadrupole magnet with an integrated dipole steering element was developed. The steering dipole consists of four saddle shaped coils situated within the bore of the quadrupole magnet providing a maximum steering angle of 2.5mrad. This paper outlines the magnetic and mechanical design of the steering element.  
 
WEPS106 Status of Injection Upgrade Studies for the ISIS Synchrotron 2760
 
  • C.M. Warsop, D.J. Adams, D.J.S. Findlay, I.S.K. Gardner, S.J.S. Jago, B. Jones, R.J. Mathieson, S.J. Payne, B.G. Pine, A. Seville, H. V. Smith, J.W.G. Thomason, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • C.R. Prior, G.H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is the spallation neutron source at the Rutherford Appleton Laboratory in the UK. Operation centres on a high intensity proton accelerator, consisting of a 70 MeV linac and an 800 MeV rapid cycling synchrotron, which provides a beam power of 0.2 MW. Obsolescence issues are motivating plans to replace the ageing 70 MeV linac, and this paper summarises the status of studies looking at how a new, higher energy linac (~180 MeV) could be used to increase beam power in the existing synchrotron. Reduced space charge and optimized injection might allow beam powers in the 0.5 MW regime, thus providing a very cost effective upgrade. The key areas of study are: design of a practical injection straight and magnets; injection painting and dynamics; foil specifications; acceleration dynamics; transverse space charge; instabilities; RF beam loading; beam loss and activation; diagnostics and possible damping systems. Results from work on most of these topics suggest that beam powers of ~0.5 MW may well be possible, but a number of topics, particularly transverse stability, still look challenging. Conclusions so far are presented, as is progress on R&D on the main intensity limiting issues.