Author: Jacewicz, M.
Paper Title Page
MOOCA02 Two Beam Test Stand Experiments in the CTF3 Facility 29
 
  • W. Farabolini, F. Peauger
    CEA/DSM/IRFU, France
  • J. Barranco, S. Bettoni, B. Constance, R. Corsini, M. Csatari, S. Döbert, A. Dubrovskiy, C. Heßler, T. Persson, G. Riddone, P.K. Skowroński, F. Tecker
    CERN, Geneva, Switzerland
  • D. Gudkov, A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • M. Jacewicz, T. Muranaka, A. Palaia, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  The CLEX building in the CTF3 facility is the place where essential experiments are performed to validate the Two-Beam Acceleration scheme upon which the CLIC project relies. The Drive Beam enters the CLEX after being recombined in the Delay loop and the Combiner Ring in intense beam trains of 24 A – 150 MeV lasting 140 ns and bunched at 12 GHz, although other beam parameters are also accessible. This beam is then decelerated in dedicated structures installed in the Test Beam Line (TBL) and in the Two-Beam Test Stand (TBTS) aimed at delivering bursts of 12 GHz RF power. In the TBTS this power is used to generate a high accelerating gradient of 100 MV/m in specially designed accelerating structures. To assess the performances of these structures a probe beam is used, produced by a small Linac. We reported here the various experiences conducted in the TBTS making use of the versatility the probe beam and of dedicated diagnostics.  
slides icon Slides MOOCA02 [3.003 MB]  
 
TUPC133 Instrumentation for the 12 GHz Stand-alone Test-stand to Test CLIC Acceleration Structures 1335
 
  • M. Jacewicz, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • J.W. Kovermann
    CERN, Geneva, Switzerland
 
  Vacuum breakdown is one of the primary limitations in the design and construction of high energy accelerators operating with warm accelerating structures (ACS) such as CLIC linear collider because the mechanisms that cause the breakdown are still a mystery. The ongoing experimental work is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the observed discharges. The CLIC collaboration is preparing a dedicated 12 GHz test-stand to observe the characteristics of the RF discharges and their eroding effects on the ACS. The instrumentation for the test-stand must be versatile and allow for the conditioning of the ACS with measurements of the breakdown rates at different power levels as well as detection of the dark current and light emission directly relevant to breakdown physics. For that purpose we are developing 2 novel instruments. A pepper-pot chamber with an external magnetic spectrometer for measurement of the spatial and energy distributions of the electrons emitted from the ACS and an optical laser system for probing the ACS to observe the effect of a discharge on the transmitted light.