Author: Hori, Y.
Paper Title Page
TUPC099 New Measurements of Proton Beam Extinction at J-PARC 1242
 
  • K. Yoshimura, Y. Hori, Y. Igarashi, S. Mihara, H. Nishiguchi, Y. Sato, M. Shimamoto, Y. Takeda, M. Uota
    KEK, Ibaraki, Japan
  • M. Aoki, S. Hikida, H. Nakai
    Osaka University, Osaka, Japan
  • Y. Hashimoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Proton beam extinction, defined as a residual to primary ratio of beam intensity, is one of the most important parameters to realize the future muon electron conversion experiment (COMET) proposed at J-PARC. To achieve the required extinction level of 10-9, we started measuring extinction at main ring (MR) as its first step. According to the various measurements done at the different positions, empty RF buckets of RCS, which were considered to be swept away by the RF chopper, contained about 10-7 ~ 10-5 of the main beam pulse due to chopper inefficiency. We have developed a new beam monitor with improved performance for further studies at the abort line. In addition, we have started new measurements at the Hadron experimental hall by using slow-extracted beam. In this paper, we present recent results and future prospect of beam extinction measurements.  
 
THPC037 Accelerators of the Central Japan Synchrotron Radiation Facility Project (II) 2987
 
  • N. Yamamoto, M. Hosaka, A. Mano, H. Morimoto, K. Takami, Y. Takashima
    Nagoya University, Nagoya, Japan
  • Y. Hori
    KEK, Ibaraki, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
  • S. Koda
    SAGA, Tosu, Japan
  • S. Sasaki
    JASRI/SPring-8, Hyogo-ken, Japan
 
  Central Japan Synchrotron Radiation (SR) Facility Project is making progress for the service from FY2012. The construction of SR building is almost completed in the Aichi area of Japan, and the installs of accelerators will start in a few week. The key equipments of our accelerators are an 1.2 GeV compact electron storage ring that is able to supply hard X-rays and a full energy injector for top-up operation. The beam current and natural emittance of the storage ring are 300 mA and 53 nmrad. The circumference is 72 m. The magnetic lattice consists of four triple bend cells and four straight sections. The bending magnets at the centers of the cells are 5 T superconducting magnets and the critical energy of the SR is 4.8 keV. The injector consists of a 50 MeV linac and a booster synchrotron with the circumference of 48 m. To save construction expenses, the injector is built at inside of the storage ring. More than ten hard X-ray beam-line can be constructed. One variable polarization undulator will be installed in the first phase. The top-up operation will be introduced as early as possible.