Author: Higashi, Y.
Paper Title Page
MOPC071 Status of High Power Tests of Normal Conducting Short Standing Wave Structures* 241
 
  • V.A. Dolgashev, Z. Li, S.G. Tantawi, A.D. Yeremian
    SLAC, Menlo Park, California, USA
  • Y. Higashi
    KEK, Ibaraki, Japan
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  Funding: Work Supported by Doe Contract No. DE-AC02-76SF00515
We report results of continuing high power tests of short standing wave structures. These tests are part of an experimental and theoretical study of basic physics of rf breakdown in 11.4 GHz, normal conducting structures. The goal of this study is to determine the accelerating gradient capability of normal conducting rf powered particle accelerators. We have tested structures of different geometries, cell joining techniques, and materials. We found that the breakdown rate dependence on peak magnetic fields is stronger than on peak surface electric fields for cylindrically symmetric structures powered via a TM01 mode launcher. We report test results for structures powered by side-coupled rectangular waveguides. We found that increased rf magnetic field due to the side-coupling increases the breakdown rate as compared to the same accelerating gradient in cylindrically symmetric structures.
 
 
TUPO012 Stable Planner Type Four-mirror Cavity Development for X-ray Production as Basic Development of Quantum Beam Technology Program 1470
 
  • H. Shimizu, Y. Higashi, Y. Honda, J. Urakawa
    KEK, Ibaraki, Japan
 
  As the development of quantum beam technology program, a facility to produce a semi-monochromatic X-ray via inverse Compton scattering with an electron beam accelerated by a superconducting RF cavity and a fiber amplified high power laser stacked in an external optical cavity system are now under construction. To achieve high brightness of Compton X-ray, we introduced a chicane with about a 1m-long zero dispersion straight section that includes IP. Head on collision scheme improves the yield of X-ray, but to do so, a huge and stout external optical cavity system must be needed. According to this demand, we develop a quite tolerable planner type four-mirror cavity with movable mirror mount system. In this paper, results obtained by the cavity construction and also laser development activities are described.