Author: Henry, J.
Paper Title Page
MOPC113 Results of Cavity Series Fabrication at Jefferson Laboratory for the Cryomodule “R100” 340
 
  • F. Marhauser, W.A. Clemens, M.A. Drury, D. Forehand, J. Henry, S. Manning, R.B. Overton, R.S. Williams
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A series production of eight superconducting RF cavities for the cryomodule R100 was conducted at JLab in 2010. The cavities underwent chemical post-processing prior to vertical high power testing and routinely exceeded the envisaged performance specifications. After cryomodule assembly, cavities were successfully high power acceptance tested. In this paper, we present the achievements paving the way for the first demonstration of 100 MV (and beyond) in a single cryomodule to be operated at CEBAF.
 
 
MOPC114 Design, Fabrication and Testing of Medium-Beta 650 MHz SRF Cavity Prototypes for Project-X 343
 
  • F. Marhauser, W.A. Clemens, J. Henry, P. Kneisel, R. Martin, R.A. Rimmer, G. Slack, L. Turlington, R.S. Williams
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A new type of superconducting radio frequency (SRF) cavity shape with a shallow equator dome to reduce electron impact energies for suppressing multipacting barriers has been proposed. The shape is in consideration for the first time in the framework of Project-X to design a potential multi-cell cavity candidate for the medium-beta section of the SRF proton CW linac operating at 650 MHz. Rationales covering the design of the multi-cell cavity, the manufacture, post-processing and high power testing of two single-cell prototypes are presented.