Author: Ge, X.J.
Paper Title Page
MOPC132 Influences of the Inner-conductor on Microwave Characteristics in an L-band Relativistic Backward-wave Oscillator* 388
 
  • X.J. Ge, L. Liu, B.L. Qian, J. Zhang, H.H. Zhong
    National University of Defense Technology, Changsha, Kaifu District, People's Republic of China
 
  Funding: College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, People’s Republic of China. *gexingjun230230@yahoo.com.cn
The influences of the inner-conductor on microwave characteristics in an L-band relativistic backward-wave oscillator (RBWO) are investigated theoretically and experimentally. The numerical results show that the resonance frequency decreases obviously with the increase in the inner-conductor radius. To verify the above conclusions, an L-band coaxial RBWO is investigated in detail with particle-in-cell (PIC) code. It is shown that the frequency is lowered from 1.63 GHz to 1.51 GHz when the inner-conductor radius increases from 0.5 cm to 2.5 cm. And the efficiency varies in the range of 35.4-27.7%. Furthermore, experiments are carried out at the Torch-01 accelerator. When the diode voltage is 887.6 kV and the current is 7.65 kA, the radiated microwave with frequency of 1.61 GHz, power of 2.13 GW and efficiency of 31.3% is generated. It is found that the frequency decreases from 1.64 GHz to 1.58 GHz when the inner-conductor radius increases from 0.5 cm to 1.5 cm. And the efficiency varies in the range of 31.3-29.8%.