Author: Garfinkel, A.F.
Paper Title Page
THPC186 Heat Load for the APS Superconducting Undulator 3332
 
  • L.E. Boon, A.F. Garfinkel
    Purdue University, West Lafayette, Indiana, USA
  • K.C. Harkay
    ANL, Argonne, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The APS Upgrade calls for the development and commissioning of a superconducting undulator (SCU) at the Advanced Photon Source (APS), a 7-GeV electron synchrotron. The first SCU will be installed in June 2012. Until then, simulations such as SYNRAD3D will be used to understand and reduce the heat load on the cryo-system from primary and secondary photons. Current calculations predict that primary photons will distribute 0.5W/m on the chamber walls of the cryostat. SYNRAD3D will be used to calculate the ratio of primary and secondary photons to calculate the heat load due to secondary photons. Previous simulations were of only one sector of the APS accelerator. Simulated here are multiple sectors, to include photons back scattered from downstream photon absorbers.