Author: Ganter, R.
Paper Title Page
TUPO007 FLUTE, a Linac Based THz Source 1458
 
  • S. Naknaimueang, M. Schwarz
    Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • R. Abela, H.-H. Braun, R. Ganter, B. Patterson
    PSI, Villigen, Switzerland
  • A.H. Albert, T. Baumbach, M. Hagelstein, N. Hiller, E. Huttel, V. Judin, B. Kehrer, R. Kubat, S. Marsching, W. Mexner, A.-S. Müller, M.J. Nasse, A. Plech, R. Rossmanith, M. Schuh
    KIT, Karlsruhe, Germany
  • M.T. Schmelling
    MPI-K, Heidelberg, Germany
 
  We propose a versatile THz source named FLUTE (“Ferninfrarot Linac- Und Test-Experiment”) based on a 30 - 50 MeV S-band linac with bunch compressor, that shall not only provide high field THz pulses applications but shall also serve as a test facility to study important accelerator physics issues. This is also of importance in view of the planned utltra-broadband THz to mid infrared user facility TBONE. Special emphasis is put on studies of bunch compression and beam stability as a function of bunch charge (0.1-5 nC) and of different generation mechanisms of coherent radiation (CSR, CER, CTR). This paper describes the design and layout of the proposed FLUTE machine and presents results of beam dynamic calculations with the tracking programs ASTRA and CSRtrack.  
 
THPC095 Commissioning Status of the SwissFEL Injector Test Facility 3110
 
  • T. Schietinger, M. Aiba, S. Bettoni, B. Beutner, A. Falone, R. Ganter, R. Ischebeck, F. Le Pimpec, N. Milas, G.L. Orlandi, M. Pedrozzi, E. Prat, S. Reiche, C. Vicario
    PSI, Villigen, Switzerland
 
  The SwissFEL injector test facility at the Paul Scherrer Institute has been in operation since August 2010. Its primary goal is the demonstration of a high-brightness electron beam as it will be required to drive the SwissFEL main linac. The injector further serves as a platform for the development and validation of accelerator components needed for the SwissFEL project. We give an overview of recent commissioning activities at about 130 MeV beam energy, with particular emphasis on results from optics matching studies and emittance measurements, the latter obtained with different optics-based methods. A five-cell transverse-deflecting cavity allows studies of the longitudinal bunch charge distribution and slice emittance. Bunch length measurements will become the focus of interest after the installation of a magnetic compression chicane, currently scheduled for the summer of 2011.