Author: Fukuda, M.
Paper Title Page
MOPZ001 MuSIC, the World's Highest Intensity DC Muon Beam using a Pion Capture System 820
 
  • A. Sato, Y. Kuno, H. Sakamoto
    Osaka University, Osaka, Japan
  • S. Cook, R.T.P. D'Arcy
    UCL, London, United Kingdom
  • M. Fukuda, K. Hatanaka
    RCNP, Osaka, Japan
  • Y. Hino, N.H. Tran, N.M. Truong
    Osaka University, Graduate School of Science, Osaka, Japan
  • Y. Mori
    KURRI, Osaka, Japan
  • T. Ogitsu, A. Yamamoto, M.Y. Yoshida
    KEK, Ibaraki, Japan
 
  MuSIC is a project to provide the world's highest-intensity muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP) of Osaka University, Japan. A pion capture system using a superconducting solenoid magnet and a part of superconducting muon transport solenoid channel have been build in 2010. The highest muon production efficiency was demonstrated by the beam test carried out in February 2011. The result concludes that the MuSIC can provide more than 109 muons/sec using a 400 W proton beam. The pion capture system is one of very important technologies for future muon programs such as muon to electron conversion searches, neutrino factories, and a muon collider. The MuSIC built the first pion capture system and demonstrate its potential to provide an intense muon beam. The construction on the entire beam channel of the MuSIC will be finished in five years. We plan to carry out not only an experiment to search the lepton flavor violating process but also other experiments for muon science and their applications using the intense muon beam at RCNP.  
 
WEPO028 Design of HTS Sector Magnets for the RCNP New Injector Cyclotron 2460
 
  • K. Hatanaka, M. Fukuda, N. Izumi, M. Kibayashi, S. Morinobu, K. Nagayama, T. Saito, H. Tamura, H. Ueda, Y. Yasuda, T. Yorita
    RCNP, Osaka, Japan
  • T. Kawaguchi
    KT Science Ltd., Akashi, Japan
 
  The RCNP cyclotron cascade system consists of K140 AVF cyclotron and K400 ring cyclotron and is providing high quality beams for various experiments. There are increasing demands for high intensity beams and even to improve the quality. In order to increase the physics research opportunities, a new injector cyclotron is recently proposed, which has four separated sector magnets and two accelerating cavities. Sector magnets are designed to use High Temperature Superconducting (HTS) wire. At RCNP we have been developing magnets with HTS wires for a decade. In this paper, we will report recent results of developed HTS magnets and the design of sector magnets for the new injector SSC.  
 
WEPS080 Development of High-quality Intense Proton Beam at the RCNP Cyclotron Facility 2694
 
  • M. Fukuda, K. Hatanaka, M. Kibayashi, S. Morinobu, K. Nagayama, T. Saito, H. Tamura, H. Ueda, H. Yamamoto, T. Yorita
    RCNP, Osaka, Japan
 
  A 2.45 GHz ECR proton source, equipped with a set of three permanent magnets, was developed to increase the intensity of a high-quality proton beam. A 15 keV proton beam with intensity of 0.6 mA was produced with a proton ratio of more than 80 %. Emittance of the proton beam with intensity of 50 to 100 micro-A in the LEBT system was around 50 pi-mm-mrad. Beam transmission, defined by the ratio of the beam intensity between a Faraday cup placed in the axial injection beam line and an inflector electrode of the AVF cyclotron, was improved from 25 % for a 70 micro-A proton beam to more than 90 % for 30 micro-A obtained by defining the injection beam with a beam slit of iris type. The result indicated that the beam transmission was limited by the acceptance of the axial injection beam line. Emittance of the 65 MeV proton beam accelerated by the K140 AVF cyclotron was a few pi-mm-mrad for beam intensity of several-micro-A. In this paper, development of the intense proton beam and evaluation of the proton beam quality will be mainly reported.