Author: Fernandez Huerta, F.J.
Paper Title Page
THPS023 Automatic Tuner Unit Design, Simulation and Measurement for Automatic Operation of the RF System in the ESS-Bilbao H+ Ion Source 3469
 
  • L. Muguira, I. Arredondo, D. Belver, M. Eguiraun, F.J. Fernandez Huerta, J. Feuchtwanger, N. Garmendia, O. Gonzalez, J. Verdu
    ESS-Bilbao, Zamudio, Spain
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
The Ion Source responsible intended to generate a high current and low emittance proton beam for the ESS-Bilbao is currently under construction. The plasma in the source is generated by coupling the 2.72 GHz power input from a Klystron through a magnetic field with an intensity close to the electron cyclotron resonance (ECR) field at the input RF frequency. The electrical behavior of the plasma strongly depends on different plasma characteristics which, at the same time, also depend on the microwave absorption. Thus, in order to maximize the RF power transferred to the plasma, a waveguide automatic tuner unit is employed to match the generator output to the electric impedance of the plasma. This device is generally adjusted manually. In this paper, the design, the 1D and 3D simulation, and measurements are presented which allows us to propose an automatic and real time control of the device. In a first approximation, with the aim of testing the proper operation of the automatic tuner unit, an in-house variable phase shifter and attenuator has been designed and manufactured to simulate the electric behavior of the plasma.