Author: Falone, A.
Paper Title Page
THPC095 Commissioning Status of the SwissFEL Injector Test Facility 3110
 
  • T. Schietinger, M. Aiba, S. Bettoni, B. Beutner, A. Falone, R. Ganter, R. Ischebeck, F. Le Pimpec, N. Milas, G.L. Orlandi, M. Pedrozzi, E. Prat, S. Reiche, C. Vicario
    PSI, Villigen, Switzerland
 
  The SwissFEL injector test facility at the Paul Scherrer Institute has been in operation since August 2010. Its primary goal is the demonstration of a high-brightness electron beam as it will be required to drive the SwissFEL main linac. The injector further serves as a platform for the development and validation of accelerator components needed for the SwissFEL project. We give an overview of recent commissioning activities at about 130 MeV beam energy, with particular emphasis on results from optics matching studies and emittance measurements, the latter obtained with different optics-based methods. A five-cell transverse-deflecting cavity allows studies of the longitudinal bunch charge distribution and slice emittance. Bunch length measurements will become the focus of interest after the installation of a magnetic compression chicane, currently scheduled for the summer of 2011.  
 
THPC126 RF Gun Studies for the SwissFEL Injector 3179
 
  • A. Falone, A. Adelmann, J.-Y. Raguin, L. Stingelin
    PSI, Villigen, Switzerland
 
  The Paul Scherrer Institut (PSI) is planning a compact, high brightness hard X-ray free electron laser. For this purpose a new 2.5 cell RF gun has been designed at PSI and is now in production. The RF gun plays an important role in preserving beam emittance, and hence delivers a high quality beam to the injector. We present beam dynamic parametric studies on the effect of cell length variations using two different codes OPAL and ASTRA. Furthermore laser and other RF parameters are scanned to find the best working point of the injector. The simulations are showing that the SwissFEL injector requirements (ϵ<0.4 mm mrad normalized projected emittance) are achievable with a smooth dependence on the geometrical variation of the gun cell lengths confirming a robust RF design of the gun is possible.